A Pesquisa Mensal do Comércio (PMC) é o principal indicador em frequência mensal para avaliar como se comportam o volume de vendas e de receita no varejo brasileiro. A pesquisa conduzida pelo IBGE conta com dados disponíveis no SIDRA e pode ser acessada via o pacote de R sidrar. No nosso Curso de Análise de Conjuntura usando o R, nós ensinamos os alunos a construir scripts que automatizam a coleta, tratamento e apresentação da pesquisa.
O início do script é carregando os pacotes necessários.
Uma vez que os pacotes são carregados, nós podemos coletar os dados diretamente via a API do SIDRA/IBGE. O código abaixo dá um exemplo para o varejo restrito.
## Coleta e tratamento dos dados do Comércio Restrito
names = c('date', 'receita', 'receita_sa', 'volume', 'volume_sa')
restrito = get_sidra(api='/t/3416/n1/all/v/all/p/all/c11046/40311,40312/d/v564%201,v565%201') %>%
mutate(date = parse_date(`Mês (Código)`, format = '%Y%m')) %>%
select(`Variável`, date, `Tipos de índice`, Valor) %>%
spread(`Variável`, Valor) %>%
pivot_wider(id_cols = date,
names_from = 'Tipos de índice',
values_from = c('Índice de receita nominal de vendas no comércio varejista',
'Índice de volume de vendas no comércio varejista')) %>%
`colnames<-`(names) %>%
as_tibble()
A seguir, colocamos um gráfico com a variação interanual.
A produção industrial tem sofrido com os choques que afetaram a economia brasileira nos últimos anos mais do que os demais setores. De modo a ilustrar esse ponto, nós importamos, tratamos e visualizamos os dados desagregados da pesquisa, com base nas atividades industriais. Os dados são importados a partir do SIDRA, com o pacote sidrar.
# Importação dos dados
## Produção Física por Seção e Atividades
table1 = get_sidra(api='/t/3653/n1/all/v/3134,3135/p/all/c544/all/d/v3134%201,v3135%201')
## Produção Física por grandes categorias econômicas
table2 = get_sidra(api='/t/3651/n1/all/v/3134,3135/p/all/c543/129278,129283,129300,129301,129305/d/v3134%201,v3135%201')
## Ponderações
pond = read_csv2('ponderacao.csv',
locale = locale(encoding = 'Latin1'))
## Atividades com ajuste sazonal
series = as.numeric(table1$`Seções e atividades industriais (CNAE 2.0) (Código)`[1:28])
names = pond$Atividades
atividades_sa <- matrix(NA, ncol=length(series),
nrow=nrow(table1)/length(series)/2)
for(i in 1:length(series)){
atividades_sa[,i] <- table1$Valor[table1$`Variável (Código)`==3134 & table1$`Seções e atividades industriais (CNAE 2.0) (Código)`==series[i]]
}
colnames(atividades_sa) = names
## Atividades sem ajuste sazonal
atividades <- matrix(NA, ncol=length(series),
nrow=nrow(table1)/length(series)/2)
for(i in 1:length(series)){
atividades[,i] <- table1$Valor[table1$`Variável (Código)`==3135 & table1$`Seções e atividades industriais (CNAE 2.0) (Código)`==series[i]]
}
colnames(atividades) = names
Uma vez importados os dados, podemos criar algumas métricas.
Os gráficos acima trazem o número índice (com ajuste sazonal) completo de quatro indicadores. Observe que houve uma queda forte da produção industrial no período da greve dos caminhoneiros em maio de 2018. Desde então, a produção industrial tem sofrido para crescer. Em particular, a produção de veículos sofre com os problemas da Argentina, principal comprador de carros brasileiros.
A Pesquisa Industrial Mensal - Produção Física, divulgada pelo IBGE, é a principal pesquisa do setor. São avaliados 805 produtos das indústrias extrativa e de transformação. Nesta, há 25 atividades industriais pesquisadas. O peso de cada uma na indústria geral é dado pelo Valor de Transformação Industrial (VTI), sendo as maiores participações dadas pela fabricação de produtos alimentícios, indústria extrativa, derivados de petróleo e produção de veículos. O gráfico a seguir ilustra a participação de cada uma das atividades industriais.
A seguir nós ilustramos as métricas que construímos para uma janela mais recente. Primeiro, damos uma olhada na variação mensal.
A seguir, ilustramos a variação interanual...
Por fim, mostramos a variação acumulada em 12 meses desses índices selecionados.
Como se vê, a produção industrial mostra grandes dificuldades de voltar a crescer. É, de fato, o setor que mais sofreu com os choques recentes. Em particular, com a greve dos caminhoneiros e com os problemas na Argentina. Ao longo das próximas semanas, divulgaremos um exercício de modelagem e previsão, no âmbito do Clube do Código, que nos permitirá fazer uma análise prospectiva do setor em 2020.
_____________________
(*) Os códigos completos desse comentário estarão disponíveis logo mais no Clube do Código.
(**) Aprenda a construir análises como essa em nossos Cursos Aplicados de R:
Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!