fred

Como construir uma base de dados para gerar previsões para a inflação medida pelo IPCA

Neste exercício, apresentamos as principais fontes de dados públicos utilizadas na macroeconomia e desenvolvemos uma rotina para coletar, tratar e disponibilizar (ETL) as variáveis para uso em modelos preditivos.

DBnomics: 1 bilhão de dados econômicos no Python

Neste exercício mostramos como usar a API de dados da DBnomics, que disponibiliza dados econômicos do Brasil e do mundo de ~100 fontes diferentes. Além de ser gratuita, a API é acessível diretamente do Python e é atualizada em tempo quase real.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.