inferência causal no python

Como podemos traduzir os efeitos de uma política pública para valores monetários? Essa é uma tarefa árdua que requer algumas premissas, entretanto, com métodos bem definidos, é possível obter estimativas precisas dos ganhos e os gastos de uma política pública. Neste exercício, demonstramos tal método usando a política hipotética “Mãe Paranense”, um conjunto de ações que visam reduzir a mortalidade materna e infantil no estado. Usamos a linguagem R como ferramenta para analisar os dados.
O que é Pareamento? E o que significa Propensity Score? Como podemos utilizar essa ferramenta para auxiliar no estudo da avaliação de impacto? Neste post, oferecemos uma breve introdução a esse importante método da área de inferência causal, acompanhado de um estudo de caso para uma compreensão mais aprofundada de sua aplicação. Os resultados foram obtidos por meio da implementação em Python, como parte integrante do nosso curso sobre Avaliação de Políticas Públicas utilizando esta linguagem de programação.Quer saber como essa análise foi construída? Seja aluno do nosso curso Avaliação de Políticas Públicas usando Python, e tenha acesso às aulas teóricas e práticas, com o código disponibilizado em Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.