modelos de previsão

Colocar modelos em produção pode ser um grande desafio. Lidar com custos monetários, infraestrutura operacional e complexidades de códigos e ferramentas pode acabar matando potenciais projetos. Uma solução que elimina todos estes obstáculos é a recém lançada Shinylive. Neste artigo mostramos um exemplo com um modelo de previsão para o preço do petróleo Brent.
Modelos muito simples ou muito complexos podem gerar previsões com alto viés ou alta variância. A grande tarefa de quem trabalha com modelos preditivos é explorar uma especificação de modelo de modo a minimizar o erro de previsão, mas sem cair nestes dois extremos, o que pode ser desafiador. Neste artigo apresentamos estes conceitos e mostramos como analisar ajustes e previsões de modelos de modo a compreender o trade-off entre viés e variância.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.