Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.
Neste exercício, contruímos um modelo simples de previsão para o Resultado Primário do Setor Público Consolidado (acumulado em 12 meses, % PIB), usando apenas dados públicos, modelos econométricos, a literatura recente e a linguagem R. Em uma abordagem automatizada, as previsões do modelo se aproximam das previsões do mercado para o ano de 2025.
Usamos uma cesta de 12 moedas para construir um cenário contrafactual da taxa de câmbio após o último anúncio de pacote fiscal, com base em modelagem Bayesiana. No período, o dolár depreciou quase 5% e passou os R$ 6,15, enquanto que na ausência da intervenção a moeda deveria estar cotada em R$ 5,78.
Todos os anos milhares de proposições legislativas são geradas na Câmara dos Deputados e Senado Federal, o que dificulta o trabalho de monitoramento feito por economistas, jornalistas e analistas de mercado. No entanto, ao empregar técnicas de engenharia de prompt e IA, podemos analisar estas milhares de proposições em questão de segundos. Neste exercício mostramos o caminho para esta automatização usando o Python.