Os dados desagregados do IPCA fornecem informações detalhadas sobre o comportamento de preços no Brasil a nível de região metropolitana e município, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.
Neste artigo mostramos como pesquisar e como coletar os dados do portal do Banco Central do Chile através do sistema de API usando a linguagem Python. Este processo permite automatizar rotinas de extração de dados, eliminando trabalho manual e repetitivo de atualização de bases de dados econômicos.
Os microdados dos CAGED fornecem informações detalhadas a nível de cidade, sexo, raça, nível de instrução, idade, salário e outras sobre os trabalhadores formais do Brasil, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.
Neste artigo mostramos como pesquisar e como coletar os dados do portal do ECB através do sistema de API usando a linguagem Python. Este processo permite automatizar rotinas de extração de dados, eliminando trabalho manual e repetitivo de atualização de bases de dados econômicos.
Colocar modelos em produção pode ser um grande desafio. Lidar com custos monetários, infraestrutura operacional e complexidades de códigos e ferramentas pode acabar matando potenciais projetos. Uma solução que elimina todos estes obstáculos é a recém lançada Shinylive. Neste artigo mostramos um exemplo com um modelo de previsão para o preço do petróleo Brent.