Neste texto abordamos métodos de suavização exponencial simples, com tendência e com sazonalidade para finalidade de previsão de séries temporais. Mostramos as diferenças de cada método com exemplos de dados econômicos do Brasil, em aplicações nas linguagens de programação R e Python.
Como estimar uma regressão linear sem linguagem de programação? Nesse texto introduzimos esse modelo fundamental de ciência de dados, abrindo as fórmulas e ajustando uma regressão “na mão”, para que o código pronto não seja uma caixa preta. Usamos como exemplo o problema da precificação de imóveis, com aplicações em R e Python.
Modelos muito simples ou muito complexos podem gerar previsões com alto viés ou alta variância. A grande tarefa de quem trabalha com modelos preditivos é explorar uma especificação de modelo de modo a minimizar o erro de previsão, mas sem cair nestes dois extremos, o que pode ser desafiador. Neste artigo apresentamos estes conceitos e mostramos como analisar ajustes e previsões de modelos de modo a compreender o trade-off entre viés e variância.
Neste artigo, vamos apresentar técnicas e métodos úteis para analisar séries temporais e entender suas características. Mostramos as aplicações e interpretações de cada técnica com exemplos de dados reais, usando as linguagens de programação R e Python.
Neste artigo, vamos apresentar o conceito de correlação na estatística, avaliar sua aplicabilidade no mundo real, verificar como estimar e interpretar o coeficiente de correlação e, por fim, vamos ver como aplicar a análise de correlação com dados macro-financeiros do Brasil, usando as linguagens de programação R e Python.