Como usar o VS Code totalmente na nuvem com zero configurações?

Para o dia a dia de análise e ciência de dados é necessário um ambiente de programação com tudo instalado e configurado para uso. Há uma infinidade de opções em termos de infraestrutura, recursos, interfaces de desenvolvimento, integrações, dentre outros, o que faz com que profissionais iniciantes fiquem perdidos e profissionais experientes fiquem acomodados com ferramentas antigas. Neste artigo mostramos uma solução simples, poderosa e popular que requer zero instalações ou configurações.

GitHub Codespaces

O GitHub Codespaces é um recurso disponível em repositórios GitHub que fornece um ambiente de programação em nuvem. Com ele é possível acessar com um clique a interface de desenvolvimento (IDE) VS Code diretamente pelo navegador e começar a programar com as principais linguagens, como:

  • Python
  • R
  • SQL

Várias linguagens já estão disponíveis “de fábrica”, assim que você acessa a interface, e várias outras estão disponíveis usando uma imagem Docker que instala e configura tudo automaticamente. Em outras palavras, não há necessidade de baixar nada ou “adicionar algo ao PATH”, que são pedras nos sapatos de muitos iniciantes.

Algumas vantagens interessantes de utilizar o recurso GitHub Codespaces são:

  • Suporte multi-linguagens de programação
  • 60 horas de uso grátis por mês
  • Recursos computacionais personalizáveis (RAM, CPU e armazenamento)
  • Interface de desenvolvimento VS Code com milhares de extensões e integrações

Para saber mais, consulte a documentação oficial.

Guia prático de uso: VS Code via GitHub Codespaces

Para acessar a interface de desenvolvimento do VS Code pelo GitHub Codespaces é necessário possuir uma conta na plataforma GitHub e seguir estes passos:

  1. Crie um repositório GitHub acessando https://github.com/new
    • Digite um nome de repositório em “Repository name
    • Marque a opção “Add a README file
    • Escolha entre repositório público ou privado
    • Leia as demais opções e finalize clicando em “Create repository
  2. Acesse o GitHub Codespaces clicando em Code > Codespaces > Create codespace on main

Aguarde alguns segundos até a página carregar a interface do VS Code e habilitar o painel Terminal e pronto, você já pode começar a programar!

Que tal abandonar aqueles Jupyter Notebooks e começar a usar algo mais profissional?

Utilizando o R no VS Code via GitHub Codespaces

Atualmente a linguagem de programação R não está disponível na imagem básica do GitHub Codespaces, mas podemos utilizar imagens alternativas que fazem o serviço de instalar e configurar tudo que for necessário.

O projeto Rocker fornece e mantém várias imagens Docker gratuitamente para a comunidade R. Para usar a imagem básica siga estes passos adicionais:

  1. No VS Code, pressione o atalho Cmd/Ctrl + Shift + P
  2. Digite “add dev” na janela que se abrir e clique em Codespaces: Add Dev Container Configuration Files
  3. Clique em Create a new configuration
  4. Digite “rocker” e escolha uma imagem do projeto Rocker disponível
  5. Escolha uma versão de R disponível para uso
  6. Escolha o tipo de imagem disponível
  7. Opcionalmente, escolha recursos adicionais como Quarto, renv, etc.
  8. Finalize clicando em OK e depois em Rebuild Now e confirme com Rebuild

Aguarde o processo automatizado de preparação do ambiente de programação ser finalizado e pronto, você já pode começar a programar!

Esse artigo cobriu o básico de uso do VS Code via GitHub Codespaces. Confira os cursos da Análise Macro para mais detalhes e exemplos de uso destas ferramentas.

Conclusão

Para o dia a dia de análise e ciência de dados é necessário um ambiente de programação com tudo instalado e configurado para uso. Há uma infinidade de opções em termos de infraestrutura, recursos, interfaces de desenvolvimento, integrações, dentre outros, o que faz com que profissionais iniciantes fiquem perdidos e profissionais experientes fiquem acomodados com ferramentas antigas. Neste artigo mostramos uma solução simples, poderosa e popular que requer zero instalações ou configurações.

Quer aprender mais?

  •  Cadastre-se gratuitamente aqui no Boletim AM e receba toda terça-feira pela manhã nossa newsletter com um compilado dos nossos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas;
  •  Quer ter acesso aos códigos, vídeos e scripts de R/Python desse exercício? Vire membro do Clube AM aqui e tenha acesso à nossa Comunidade de Análise de Dados;
  •  Quer aprender a programar em R ou Python com Cursos Aplicados e diretos ao ponto em Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas? Veja nossos Cursos aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.