stop words

De tokens até stop words, passando por procedimentos de stemming e lemmatizing, dentre outros, neste artigo introduzimos as principais técnicas e conceitos de mineração de textos, preparando os dados para a análise.
Neste exercício de text mining, avaliamos o poder preditivo de um indicador de sentimentos construído quantitativamente com base nos textos das atas do COPOM. Usando a linguagem R, performamos o teste de causalidade de Granger e analisamos a correlação do indicador com as variáveis macroeconômicas do boletim Focus.
Previamente, construímos um indicador que quantifica o sentimento proveniente das decisões de política monetária, implícito nas atas do COPOM. Hoje, avaliaremos se o indicador provê informações úteis para tomadores de decisão, seus pontos fortes e fracos, assim como sua interpretação prática.
Neste exercício, construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, criamos tokens a partir das atas do Comitê de Política Monetária (COPOM) do Banco Central, o que permite classificar o sentimento implícito nos textos.
O que informações textuais podem revelar sobre a situação da economia? Como transformar palavras em estatísticas e obter insights? Há algo informativo nas entrelinhas das atas do COPOM? Como usar Machine Learning para interpretar os comunicados da autoridade monetária? Neste exercício, damos continuidade aos posts sobre Natural Language Processing (NLP) demonstrando a aplicação da técnica de topic modeling com as atas do COPOM.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.