Tag

uso do R Archives - Análise Macro

Começando a programar com o R

By | Hackeando o R

Há algumas semanas, publiquei nesse espaço sobre por que você deveria pensar seriamente em começar a programar. Passadas as festas de final de ano, volto ao tema dando um direcionamento para quem ficou interessado. Vou mostrar como começar a programar com o R.

Antes de tudo, é preciso que você tenha os programas necessários. Serão três programas: \mathbf{R}, \mathbf{RStudio} e \mathbf{MikTex}. Não se preocupe, posto que são todos programas gratuitos e com download seguro. Desse modo, para que não tenhamos problemas, siga a sequência abaixo:

O \mathbf{RStudio} é uma IDE amigável que nos permite emular todos os códigos do \mathbf{R}, visualizar gráficos, ver o histórico de nossas operações, importar dados, criar scripts, etc. Com o \mathbf{RStudio}, poderemos otimizar o nosso trabalho de análise de dados, de maneira que a ter mais facilidade para interagir com a linguagem.

A figura acima resume as quatro principais partes de uma tela do \mathbf{RStudio}. Na parte superior esquerda é onde ficará o nosso editor de scripts. Um script é uma sequência de comandos com um determinado objetivo. Por exemplo, você pode estar interessado em construir um modelo univariado para fins de previsão do índice BOVESPA. Para isso, terá de primeiro importar os dados do Ibovespa, bem como fazer uma análise descritiva inicial dos dados. Depois, com base nessa análise inicial, você terá de decidir entre alguns modelos univariados distintos. De posse da sua decisão, você enfim construirá um modelo de previsão para o índice BOVESPA. Essa sequência de linhas de comando pode ficar armazenada em um script, com extensão .R, podendo ser acessada posteriormente por você mesmo ou compartilhada com outros colegas de trabalho. Para abrir um novo script, vá em File, New File e clique em R Script.

Na parte inferior esquerda, está o console do R, onde você poderá executar comandos rápidos, que não queira registrar no seu script, bem como será mostrados os outputs dos comandos que você executou no seu script.

Já na parte superior direita, está o Environment, onde ficam mostrados os objetos que você cria ao longo da sua seção no RStudio. Por fim, na parte inferior direita, ficarão os gráficos que você solicitar, bem como pacotes que você instalou, alguma ajuda sobre as funções e os arquivos disponíveis no seu diretório de trabalho.

Agora que você já instalou os programas e já conhece um pouco do ambiente do \mathbf{RStudio}, podemos começar a brincar um pouco. Para isso, antes de mais nada é preciso definir o seu diretório de trabalho ou a pasta onde ficará salvo o seu script. Uma vez definido, você poderá importar arquivos, colocar figuras no seu documento \LaTeX, etc. Logo, dois comandos são importantes para isso. O primeiro é o getwd, para você ver o seu atual working directory. O segundo é o setwd, para você setar o seu diretório de trabalho.


setwd('C:/Users/Vítor Wilher/Dropbox/VW Economista')

Uma vez setado o seu diretório de trabalho, você poderá importar dados contidos naquela pasta. Assim, é um ponto importante realizar isso antes de qualquer coisa. Caso já tenha um script de R, por suposto, uma vez abrindo-o, o RStudio setará automaticamente o diretório onde o mesmo esteja.

Na maior parte do tempo, você estará basicamente manipulando objetos dentro do \mathbf{R}. Seja lidando com objetos criados por terceiros, seja criando seus próprios objetos. As principais estruturas de dados dentro do \mathbf{R} envolvem vetores, matrizes, listas e data frames. Abaixo colocamos um exemplo da estrutura mais simples do \mathbf{R}: um vetor que exprime a sequência de 1 a 10.


vetor <- c(1:10)

Milhares de pacotes a sua disposição

O \mathbf{R} é uma linguagem aberta, onde qualquer pessoa em qualquer parte do mundo pode dar a sua contribuição. Em geral, elas fazem isso através de pacotes, que são coleções de funções que fazem algum coisa dentro do \mathbf{R}. Veremos muitos desses pacotes ao longo do nosso curso. A instalação de pacotes é feita primariamente pelo CRAN, através da seguinte função:


install.packages('tidyverse')

Uma vez instalado, os seus pacotes ficam armazenados na pasta library da versão correspondente do seu \mathbf{R}. Uma outra forma muito comum de instalar pacotes é através do GitHub, uma plataforma bem bacana utilizada por desenvolvedores para compartilhar códigos. Ali ficam armazenados pacotes em desenvolvimento, que ainda não estão disponíveis no CRAN. Para instalar um pacote via GitHub, você deve ter instalado primeiro o pacote devtools. O código abaixo exemplifica com a instalação do pacote brasileiro rbcb.


library(devtools)
install_github('wilsonfreitas/rbcb')

Na próxima semana, escrevo sobre as principais estruturas de dados no \mathbf{R}. Até lá!

________________________

Por que aprender a programar?

By | Hackeando o R

Eu comecei a utilizar o \mathbf{R} há cerca de 6 anos, influenciado por amigos. Mas minha introdução ao mundo da programação foi bem anterior, como comento brevemente na sequência desse post. Especificamente em relação à estatística, minha introdução ao mundo dos programas estatísticos foi através do Eviews, ainda nos tempos da graduação em economia, como provavelmente muitos dos que me leem agora. Ainda que seja possível programar no Eviews e em outros pacotes estatísticos fechados (que precisam de licença), as vantagens do \mathbf{R} são inúmeras, como comentarei mais à frente. Por ora, talvez seja necessário tecer algumas palavras sobre por que afinal é preciso aprender uma linguagem de programação.

Eu poderia simplesmente falar que o mundo está mudando, que cada vez mais empregos e empresas têm exigido conhecimentos de programação. E isso de fato é verdade, o que por si só gera uma necessidade de saber programação. São cada vez mais frequentes os anúncios de vagas de emprego/estágio onde o recrutador coloca como conhecimento diferencial saber alguma linguagem de programação como \mathbf{R}, voltada para análise de dados. Com o avanço das bases de dados, em pouco tempo isso deixará de ser diferencial e passará a ser mandatório, como falar inglês ou saber Excel Avançado.

Mas, aqui entre nós, acho que é meio chato aprender algo por necessidade, não é mesmo? Mesmo que seja uma necessidade real do mercado. Por isso, vou contar um pouco sobre a minha motivação principal para começar a aprender \mathbf{R}.

Minha estória com programação, na verdade, começou há muito tempo atrás, quando entrei para o meu primeiro estágio. Que não foi em economia. Comecei a trabalhar com 16 anos, em um estágio em uma operadora de telecomunicações. Havia feito Escola Técnica na área. No estágio, fui designado para trabalhar com centrais telefônicas de grande porte, cuja interface era feita através de um terminal [remoto ou local] onde o operador escrevia linhas de comando que emulam uma espécie de programação funcional. Seja para listar status do software/hardware da central, seja para criar/modificar objetos do software.

A linguagem da central telefônica era bastante ampla em termos de código, de modo que para fazer grandes modificações na base de dados, era possível escrever programas que automatizavam a tarefa para o operador. Um exemplo prático disso foi a adoção do oitavo dígito nos telefones fixos. Imagina ter que mudar um a um os milhares de telefones existentes nas bases de dados de todas as centrais telefônicas da operadora em questão? 

Impraticável, não é mesmo?

Pois é. Justamente por essa capacidade de automatizar as coisas que a programação acabou me encantando e desde então nunca mais parei de estudar o assunto.

Aplicar isso à economia seria um pulo...

Eu estava um pouco cansado de apertar botões e fazer tarefas repetitivas em pacotes estatísticos como o Eviews, então parecia natural aprender uma forma de automatizar as coisas, como eu fiz durante 7 anos na indústria de telecomunicações - tempo maravilhoso, diga-se. Essa, afinal, era uma baita motivação para mim: aplicar a mesma ideia dos meus anos de telecom à economia. Provavelmente, você também passe por isso no seu trabalho, não é mesmo? Talvez não propriamente com o Eviews, mas com o Excel.

Motivação esclarecida, mas por que o \mathbf{R}, você pode perguntar.

Essa é de fato uma boa pergunta. Por que não aprender a programar no próprio Eviews ou mesmo no Excel? Entre as inúmeras vantagens do \mathbf{R}, posso destacar:

  • A existência de uma comunidade grande e bastante entusiasmada, que compartilha conhecimento todo o tempo. Para grande parte dos problemas, basta jogar a sua dúvida no google e vai aparecer algo sobre o assunto;
  • O \mathbf{R} é gratuito, open source, de modo que você não precisa comprar licenças de software para instalá-lo;
  • A linguagem está consolidada para análise de dados, com inúmeras bibliotecas (pacotes) disponíveis em estatística, econometria, machine learning, importação, visualização e tratamento de dados;
  • Dispõe de ferramentas poderosas para comunicação dos resultados da sua pesquisa, seja em forma de um website, dashboard ou em formato de relatório pdf;
  • Com o \mathbf{R}, você consegue automatizar tarefas cansativas de coleta, tratamento, análise e apresentação de resultados através de scripts que podem ser armazenados/compartilhados com demais colaboradores, gerando maior transparência e reprodutibilidade do trabalho de análise de dados.

Ao aprender \mathbf{R}, você conseguirá integrar as etapas de coleta, tratamento, análise e apresentação de dados em um único ambiente. Não fará mais sentido ter de abrir o Excel, algum pacote estatístico, depois o power point ou o word, depois um compilador de pdf para gerar seu relatório. Todas essas etapas serão feitas em um único ambiente. Na verdade, em um único arquivo. E essa talvez seja a grande motivação para você entrar de cabeça nesse mundo.

Ao longo das próximas semanas, publicarei nessa seção Dicas de \mathbf{R} exemplos de como o \mathbf{R} pode ajudar nas tarefas de coleta, tratamento, análise e apresentação de dados, seja qual for o dado ou a área de atuação. Até lá!

________________________

Raio-X da inflação no Brasil usando o R: as classificações do IPCA.

By | Dados Macroeconômicos, Inflação, Macroeconometria

A análise da inflação envolve no Brasil uma curiosa disputa entre os economistas. Disputa essa, diga-se, completamente adormecida em países com uma taxa de inflação comportada ao longo do tempo. Nesse confronto, às vezes violento, entre profissionais com matizes teóricas distintas, há narrativas diversas sobre os motivos pelos quais a inflação é alta no país. Dentre tantos enredos, um que chamou atenção desse escriba no último ano foi o comportamento dos preços de algumas classificações do IPCA, o índice usual para medir inflação por terras tupiniquins. É um pouco disso que tratarei aqui, no terceiro post de uma série que busca ao mesmo tempo:  (i) mostrar, de forma bem introdutória, como lidar com dados macroeconômicos na prática, usando o software R; (ii) entender o comportamento da taxa de variação dos preços no país, bem como gerar alguns modelos de previsão para a inflação, dados seus determinantes. Os dois outros posts trataram, respectivamente, dos diversos índices de preços que temos e dos grupos do IPCA. Ao fim desse post espera-se que o leitor tenha melhor compreendido como o IPCA se divide por bens e serviços, comercialização com o resto do mundo e liberdade para ir e vir.

Em busca da causa de uma inflação galopante...

No primeiro post dessa série verificamos o comportamento da variação mensal e acumulada em 12 meses de 16 índices de preços ao longo dos últimos anos. Observamos que parece existir um descolamento entre os índices de preços no atacado e índices ao consumidor. Enquanto os índices no atacado mostram uma inflação comportada, abaixo, inclusive, da meta, os índices ao consumidor mostram uma inflação em aceleração. Em particular, nos últimos meses, observa-se um "salto" nos índices ao consumidor.

No segundo post da série, abrimos o IPCA, o principal índice ao consumidor do país, e analisamos os seus 9 grupos. Entendemos que o "salto" está concentrado no grupo habitação, morada do subitem energia elétrica. A despeito disso, observamos que a inflação elevada está alastrada pela maioria dos grupos do IPCA. Desse modo, não foi possível dizer que a inflação alta é apenas um sintoma do aumento de energia elétrica. É preciso ir adiante.

Com esse objetivo, trabalharemos aqui com as séries do Banco Central, que dividem o IPCA em preços monitorados e livres e estes em bens (não duráveis, semi duráveis e duráveis) e serviços, comercializáveis e não comercializáveis. O leitor pode encontrar as variações mensais dessas séries no Sistema de Séries Temporais do BCB, na parte de Atividade Econômica. Feito o download das séries, a importação para o R e carregado o pacote BMR, podemos ver os gráficos das séries com a função gtsplot, como já visto no post anterior.

Variação Mensal das Classificações do IPCA

Variação Mensal das Classificações do IPCA (%)

Um problema imediato surge ao trabalhar com essas séries do BCB. O mesmo só divulgou quais bens e serviços entram em cada classificação em um box do relatório de inflação de dezembro de 2011, para o período posterior a janeiro de 2012. Isso foi feito em virtude da adequação das séries à Pesquisa de Orçamento Familiar (POF) 2008-2009, adotada pelo IBGE na construção do índice desde então. Abaixo o leitor pode consultar como os diferentes bens e serviços são classificados atualmente de acordo com o Banco Central.

Como o BCB classifica bens e serviços do IPCA.

Como o BCB classifica bens e serviços do IPCA.

Infelizmente, entretanto, essa classificação não é retroativa. Isto é, se quisermos ir além de janeiro de 2012, as classificações se modificam, de acordo com a POF em vigor. Para o período que estamos trabalhando aqui, agosto de 1999 a abril de 2015, há basicamente três POFs: o intervalo entre agosto de 1999 e junho de 2006 é coberto pela POF 1995-1996, de julho de 2006 a dezembro de 2011 pela POF 2002-2003 e o período atual, a partir de janeiro de 2012, pela POF 2008-09. Dada essa dificuldade, como podemos ter uma noção sobre os pesos de cada uma dessas classificações no índice cheio?

Estimando os pesos das classificações do IPCA...

A forma precisa é bater na porta no Banco Central, pedir as tabelas anteriores a janeiro de 2012 e ir no IPCA desagregado verificar subitem por subitem a qual classificação ele pertence. Feito isto, agrega-se os subitens e obtêm-se os pesos de cada classificação. Complicado, não é mesmo? Bastante. Uma outra forma, bem mais simples, é regredir a variação mensal do IPCA contra as variações mensais dessas classificações, de forma a obter os coeficientes. Estes, por sua vez, podem ser interpretados como os pesos aproximados de cada classificação dentro do IPCA. Isso é feito com o código abaixo.

################## ESTIMAR PESOS ##############################

end=c(2015,4)
start=end-c(0,11)

reg.1 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,3], start=start, end=end)

reg.2 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,4]+ipca[,5]+ipca[,6]+ipca[,7],
 start=start, end=end)

reg.3 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,8]+ipca[,9], start=start,
 end=end)

Pesos <- c(1, coef(reg.1), coef(reg.2)[-1], coef(reg.3)[-1])*100

table.regressao <- stargazer(reg.1, reg.2, reg.3,
 title='Pesos Estimados',
 dep.var.labels='',
 covariate.labels=c('Monitorados','Livres',
 'Não Duráveis',
 'Semi-Duráveis',
 'Duráveis',
 'Serviços',
 'Tradeables',
 'Nontradeables'),
 align=TRUE, type='html',
 out='regressoes.html')

O objeto reg.1 é a regressão do ipca mensal contra a variação dos preços monitorados e livres, o objeto reg.2 é contra a variação mensal dos monitorados, bens [não duráveis, semi-duráveis e duráveis] e serviços e o objeto reg.3 é contra os monitorados, tradeables e nontradeables, respectivamente. Observe o leitor que as regressões são feitas sem intercepto e de forma que a composição das variáveis explicativas seja igual à variável dependente, que é a variação mensal do IPCA. O código termina com a geração de uma tabela-resumo das regressões. Ela é posta abaixo.

Pesos Estimados
Dependent variable:
(1) (2) (3)
Monitorados 0.230*** 0.232*** 0.232***
(0.001) (0.001) (0.001)
Livres 0.771***
(0.003)
Não Duráveis 0.236***
(0.002)
Semi-Duráveis 0.086***
(0.002)
Duráveis 0.093***
(0.003)
Serviços 0.353***
(0.002)
Tradeables 0.355***
(0.003)
Nontradeables 0.412***
(0.002)
Observations 12 12 12
R2 1.000 1.000 1.000
Adjusted R2 1.000 1.000 1.000
Residual Std. Error 0.004 (df = 10) 0.003 (df = 7) 0.003 (df = 9)
F Statistic 255,254.000*** (df = 2; 10) 177,343.100*** (df = 5; 7) 238,580.100*** (df = 3; 9)
Note: *p<0.1; **p<0.05; ***p<0.01

Os coeficientes das regressões podem ser interpretados, nesse contexto, como os pesos das diferentes classificações do IPCA. Os preços monitorados [ou administrados] têm peso de 23% no índice cheio, enquanto os livres de 77%. Nestes, os serviços responderam por cerca de 35 pontos percentuais e os bens [não duráveis, semi- duráveis e duráveis] pelo restante. A abertura dos preços livres por comercialização com o resto do mundo mostra que cerca de 41 p.p. são nontradeables, que não sofrem assim concorrência externa. Esse procedimento simples nos dá uma noção bastante próxima dos reais pesos das classificações, na média dos últimos 12 meses. Abaixo coloco uma tabela com todos os subitens dos preços considerados monitorados [ou administrados] nos meses desse ano, para que o leitor veja o quão próximos nossa estimação está da realidade.

Preços Administrados

A evolução dos pesos das classificações do IPCA ao longo do tempo

Como dito anteriormente, durante o período da amostra houve duas mudanças na estrutura de ponderação do IPCA, para adequá-lo à revisões da Pesquisa de Orçamento Familiar. Além disso, como explicado no post anterior, o peso de cada subitem varia de um mês para o outro, o que implica que os pesos das classificações também se modificam ao longo do tempo. Desse modo, para verificar essa evolução dos pesos ao longo do tempo, proponho abaixo uma estimação recursiva daquelas três equações acima. Em outros termos, estimam-se as equações ao longo da amostra, adicionando uma nova observação de cada vez. O código no é posto abaixo.

######################################################################
############## OLS RECURSIVO PARA PESOS ESTIMADOS ##################
######################################################################

coefs <- matrix(NA, ncol = 2, nrow = nrow(ipca))
coefs2 <- matrix(NA, ncol = 5, nrow = nrow(ipca))
coefs3 <- matrix(NA, ncol = 3, nrow = nrow(ipca))

colnames(coefs) <- c('Monitorados','Livres')
colnames(coefs2) <- c('Monitorados', 'Não-Duráveis',
 'Semi-Duráveis', 'Duráveis', 'Serviços')
colnames(coefs3) <- c('Monitorados', 'Tradeables', 'Nontradeables')

for (i in 1:nrow(ipca)){

 reg.1 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,3],
 end=start(ipca)+c(0,10+i))

 reg.2 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,4]+ipca[,5]+ipca[,6]+ipca[,7],
 end=start(ipca)+c(0,10+i))

 reg.3 <- dynlm(ipca[,1]~0+ipca[,2]+ipca[,8]+ipca[,9],
 end=start(ipca)+c(0,10+i))

 coefs[i,] <- coef(reg.1)
 coefs2[i,] <- coef(reg.2)
 coefs3[i,] <- coef(reg.3)
}

############### COEFICIENTES COMO SÉRIES DE TEMPO ###################

coefs <- ts(coefs, start=start(ipca), freq=12)
coefs2 <- ts(coefs2, start=start(ipca), freq=12)
coefs3 <- ts(coefs3, start=start(ipca), freq=12)

#################### GRÁFICOS dos COEFICIENTES ######################

coeficientes <- cbind(coefs, coefs2[,-1], coefs3[,-1])*100

colnames(coeficientes) <- c('Monitorados','Livres',
 'Não Duráveis',
 'Semi-Duráveis',
 'Duráveis',
 'Serviços',
 'Tradeables',
 'Nontradeables')

dates <- seq(as.Date('1999-08-01'), as.Date('2015-04-01'), by='1 month')

gtsplot(coeficientes, dates=dates)

E os gráficos...

Estimação Recursiva dos Pesos das Classificações do IPCA

Estimação Recursiva dos Pesos das Classificações do IPCA (%)

Os gráficos mostram a evolução dos pesos estimados das classificações do IPCA a cada nova observação adicionada. Os monitorados e livres mostram trajetórias simétricas, assim como os tradeables e os nontradeables. Os bens não duráveis perderam participação no índice cheio, enquanto os serviços têm avançado nos últimos anos. Em outras palavras, leitor, pode-se observar como as diferentes classificações contribuem ao longo do tempo para a variação do índice cheio.

As coisas começam a fazer sentido...

Estimados os pesos das classificações do IPCA e visto a evolução dos mesmos ao longo do tempo, o próximo passo para tornar o nosso entendimento sobre o processo inflacionário mais claro é acumular as variações mensais em 12 meses. O gráfico abaixo mostra essas séries dentro da nossa amostra.

Variação Anual das Classificações do IPCA

Variação Anual das Classificações do IPCA (%)

E agora uma tabela com as últimas observações de cada uma dessas classificações acompanhadas dos respectivos pesos estimados.

Classificações do IPCA (% a.a.)
Nov/14 Dez/14 Jan/15 Fev/15 Mar/15 Abr/15 Pesos
Índice Cheio 6,56 6,41 7,14 7,70 8,13 8,17 100
Monitorados 5,83 5,32 7,55 9,66 13,37 13,38 23,02
Livres 6,76 6,72 7,01 7,12 6,59 6,64 77,05
Não-Duráveis 6,97 6,88 7,34 7,85 6,89 6,37 23,64
Semi-Duráveis 3,67 3,82 3,43 3,30 3,45 3,96 8,64
Duráveis 3,45 3,01 2,89 3,21 3,19 3,32 9,28
Serviços 8,29 8,33 8,76 8,58 8,03 8,34 35,35
Tradeables 6,02 5,95 5,57 5,92 5,68 5,64 35,51
Nontradeables 7,45 7,43 8,29 8,17 7,40 7,53 41,20

Com o gráfico e a tabela das variações mensais acumuladas em 12 meses podemos começar a fazer alguma análise dos dados. Observe que, confirmando a estória contada pelos posts anteriores dessa série, o grupo de preços monitorados [ou administrados] tem sido uma fonte de pressão para o índice cheio. Ele dá um "salto" no período recente, basicamente por causa do subitem energia elétrica, como já dito aqui. Ao olhar os dados para um período maior do que os últimos meses, através do gráfico, ficamos sabendo que a inflação dos últimos anos tem sido marcante entre os preços livres, não comercializáveis, principalmente serviços. Ademais, mostra tendência de alta, também, a inflação de bens não duráveis, onde estão os alimentos, atingidos por problemas climáticos. Outros enredos podem ser verificados nas demais classificações, mas, em um primeiro olhar, a tendência dos serviços e alimentos parece chamar mais atenção.

Conseguimos, nesse contexto, explicar aquele descolamento visto no primeiro post dessa série entre preços no atacado e no varejo [ao consumidor]. A evolução dos serviços parece explicar porque os preços ao consumidor têm apresentando uma tendência de alta, enquanto os preços no atacado estão comportados. Isto porque, há muito mais serviço nas cadeias finais de produção do que nas iniciais, logo é natural que isso apareça nos índices de preços.

Para tornar ainda mais interessante a análise desses dados, podemos pedir as estatísticas descritivas no pós-crise de 2008 dessas classificações com a função stargazer do pacote de mesmo nome. Com isso podemos ter uma ideia de como, em média, se comportaram os diferentes bens e serviços nesses últimos anos.

Estatísticas pós-2008 (% a.a.)
Statistic N Mean St. Dev. Min Max
Índice Cheio 80 5,88 0,89 4,17 8,17
Monitorados 80 4,23 2,13 0,95 13,38
Livres 80 6,48 1,07 4,12 8,28
Não-Duráveis 80 7,54 2,24 3,81 13,22
Semi-Duráveis 80 5,48 1,08 3,30 7,86
Duráveis 80 0,13 2,78 -5,12 4,61
Serviços 80 7,89 0,89 6,24 9,20
Tradeables 80 5,28 1,45 2,58 7,86
Nontradeables 80 7,56 1,05 5,12 9,71

Pois é, leitor, na média entre setembro de 2008 e abril de 2015, o IPCA cheio ficou em 5,88% a.a. Ao abrir o índice cheio por preços livres e monitorados, podemos ver que nesse período a pressão veio justamente daqueles, enquanto estes se mantiveram em 4,23% a.a. Como estamos vendo um aumento bastante pronunciado ao longo dos últimos meses, o leitor atento pode desconfiar que os preços administrados se mantiveram artificialmente controlados no período. A abertura dos preços livres mostra que, de fato, há uma pressão maior vinda dos preços não duráveis [alimentos] e serviços, ainda que os semi-duráveis tenham apresentado inflação média superior à meta.

Em assim sendo, leitor, conseguimos encaminhar a resposta sobre a causa da inflação nesses três primeiros posts da série. De fato, os serviços e os alimentos [não duráveis] têm mostrado tendência crescente nos últimos anos, enquanto o "salto" dos últimos meses foi causado pelo choque elétrico ou, de forma mais geral, pelo descongelamento nos preços administrados. A inflação mais alta dos alimentos é explicada por problemas climáticos, mas e os serviços? Ademais, podemos falar que a inflação alta dos últimos anos se resume a alimentos e serviços? Ou é um processo mais amplo?

No próximo e penúltimo post dessa série mostraremos a difusão e os núcleos, de forma a verificar se a inflação alta se limita a serviços e alimentos, como propõem alguns economistas ou se há uma causa maior por trás desse processo. Espero que o leitor tenha gostado do post e que tenha começado a entender a evolução da inflação ao longo dos últimos anos.

_______________________________________

Gostou do post? Quer aprender a fazer o mesmo? Dê uma olhada no nosso curso de Introdução ao R com aplicações em Análise de Conjuntura. Faça no Rio de Janeiro ou leve para sua empresa ou universidade!

Curso04

________________________________________

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente