Neste exercício, construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, criamos tokens a partir das atas do Comitê de Política Monetária (COPOM) do Banco Central, o que permite classificar o sentimento implícito nos textos.
Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a “narrativa” com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.
Se textos pudessem falar, o que eles diriam? O uso de dados textuais é capaz de melhorar um modelo de previsão? Neste exercício exploramos o uso de fatores textuais extraídos dos comunicados do FOMC para a previsão da inflação norte-americana.
Neste post, veremos quais são os principais formatos nos quais os dados costumam ser disponibilizados e aprenderemos, através de exemplos práticos, sobre as ferramentas de ciência de dados para coletar essas informações, sejam de fontes nacionais ou internacionais, seja usando o R ou o Python.