[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]
No nosso Curso de Introdução à Econometria usando o R, os alunos aprendem a estimar modelos lineares a partir de Mínimos Quadrados Ordinários, tendo uma prática constante com o R. Para ilustrar como aprender econometria é divertido, podemos replicar um exemplo do livro clássico do Wooldridge, de Introdução à Econometria. Escolhemos aqui o exemplo 4.5, que relaciona preços de casas e poluição.
[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/11/ultimasturmas.png" show_in_lightbox="off" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]
[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]
Com uma amostra de dados imobiliários de Boston, iremos estimar um modelo para explicar preços de casas em função de algumas características locais como distância a centros de emprego, professores por aluno nas escolas próximas, número de cômodos e poluição, medida em partes de óxido nitroso por milhão no ar.
O modelo tem a seguinte forma funcional, onde é preço da casa, é a medida de óxido nitroso, é a distância ao centro comercial mais próximo, é número de cômodos, é proporções de professores por alunos:
(1)
library(wooldridge) data(hprice2) summary(lm(lprice ~ lnox + rooms + log(dist) + stratio, data = hprice2))
Reproduzindo o código, o leitor vai poder avaliar a tabela de regressão disponibilizada. O que ela nos informa? Que o parâmetro do log da poluição é estatisticamente significante e negativo, em aproximadamente . O que leva à interpretação de que um aumento de na poluição local leva a uma queda de aproximadamente nos preços das casas locais.
Quer aprender mais sobre econometria? Conheça nossos Cursos Aplicados de R! Membros do Clube do Código têm acesso aos códigos desse e de outros exercícios do capítulo 4 do Wooldridge. Assine o Clube aqui.
[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]