Você aprendeu a lidar com dados no seu curso de graduação?

[et_pb_section bb_built="1" admin_label="section"][et_pb_row admin_label="row" background_position="top_left" background_repeat="repeat" background_size="initial"][et_pb_column type="1_2"][et_pb_text text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" background_position="top_left" background_repeat="repeat" background_size="initial" _builder_version="3.17.5"]

Ontem, ao ler o Valor Econômico, me deparei com uma matéria dizendo que a taxa de poupança brasileira subiu pelo segundo ano consecutivo. Havia um gráfico na matéria mostrando a taxa de poupança doméstica em relação ao PIB. Como professor, fiquei pensando em quantos alunos nos primeiros períodos de economia seriam capazes de produzir aquele gráfico. Infelizmente, os cursos de macroeconomia da maioria das faculdades brasileiras são muito teóricos, deixando pouca ou nenhuma margem para que os alunos possam lidar com dados reais. Foi, aliás, com esse tipo de visão que eu criei os cursos de Teoria Macroeconômica e Análise de Conjuntura usando o R aqui da Análise Macro. 

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image src="https://analisemacro.com.br/wp-content/uploads/2019/03/cursosder.png" url="https://analisemacro.com.br/cursos-de-r/" align="center" use_border_color="off" _builder_version="3.17.5"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" background_position="top_left" background_repeat="repeat" background_size="initial"][et_pb_column type="4_4"][et_pb_text text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" background_position="top_left" background_repeat="repeat" background_size="initial" _builder_version="3.17.5"]

Se você que me lê nesse momento for aluno de graduação, seja sincero, conseguiria produzir esse tipo de gráfico? Se respondeu que sim, parabéns, você está acima da média entre os seus pares. Se respondeu que não, você provavelmente oscila em torno do aluno mediano de graduação em economia.

Para ilustrar como é possível fazer esse tipo de gráfico, vou, naturalmente, usar o R como ferramenta. Aqui, vou um pouco além da matéria do Valor, ilustrando o comportamento da taxa de poupança e da taxa de investimento.  Como os meus alunos aprendem no curso de Teoria Macroeconômica, a taxa aqui se refere a razão entre Poupança ou Investimento e PIB. O investimento, por seu turno, é chamado de Formação Bruta de Capital Fixo (FBCF) nas contas nacionais, que nada mais são do que a Formação Bruta de Capital (FBC) mais a variação de estoques.

Para construir um gráfico com as taxas de poupança e investimento, por suposto, precisaremos antes carregar o pacote sidrar. Uma vez carregado, eu vou pegar quatro séries: o PIB, a Poupança, a Formação Bruta de Capital e a Formação Bruta de Capital Fixo (FBCF). O código abaixo exemplifica.

library(sidrar)
tabela_cei = get_sidra(api='/t/2072/n1/all/v/933,940,941/p/all') # PIB, Poupança e FBC
fbcf = get_sidra(api='/t/1846/n1/all/v/all/p/all/c11255/93406/d/v585%200') # FBCF

Se você rodar esse código no RStudio, verá que os dados estão um pouco bagunçados. Precisaremos arrumá-los, de modo que cada coluna seja uma variável (PIB, Poupança, FBC e FBCF) e cada linha seja uma observação - nesse caso, uma série temporal com frequência trimestral. O código a seguir trata a primeira tabela.

series = c(933,940,941)
names = c('pib', 'poupanca', 'fbc')
poupanca = matrix(NA, ncol=length(series), 
nrow=nrow(tabela_cei)/length(series))
for(i in 1:length(series)){
poupanca[,i] = tabela_cei$Valor[tabela_cei$`Variável (Código)`
==series[i]] 
poupanca = ts(poupanca, start=c(2000,01), freq=4)
colnames(poupanca) = names
}

A matriz poupanca tem agora as três séries. Arrumar os dados da FBCF, que está na segunda tabela, é trivial. Você pode fazê-lo e colocá-lo junto com as outras três séries. Uma vez que os dados estejam organizados em uma matriz, ainda precisaremos acumulá-los em quatro trimestres, de modo que tenhamos dados anualizados. Sem isso, a série terá muita volatilidade. Finalmente, precisaremos normalizar os dados de poupança e investimento pelo PIB, de modo a termos as tais taxas. Podemos utilizar a seguir para então produzir essas taxas...

datapoup = cbind((poupanca[,2]+lag(poupanca[,2],-1)+
lag(poupanca[,2],-2)+lag(poupanca[,2],-3))/
(poupanca[,1]+lag(poupanca[,1],-1)+
lag(poupanca[,1],-2)+lag(poupanca[,1],-3))*100,
(poupanca[,3]+lag(poupanca[,3],-1)+
lag(poupanca[,3],-2)+lag(poupanca[,3],-3))/
(poupanca[,1]+lag(poupanca[,1],-1)+
lag(poupanca[,1],-2)+lag(poupanca[,1],-3))*100,
(fbcf+lag(fbcf,-1)+lag(fbcf,-2)+lag(fbcf,-3))/(poupanca[,1]+
lag(poupanca[,1],-1)+
lag(poupanca[,1],-2)+lag(poupanca[,1],-3))*100)
colnames(datapoup) = c('poupanca', 'fbc', 'fbcf')

O objeto datapoup possui agora a taxa de poupança, a taxa de investimento e a relação entre FBC/PIB. Finalmente, estamos prontos para gerar um gráfico como o abaixo.

Ei você que disse que sabia construir esse tipo de gráfico, será que sabia mesmo? Lidar com dados é o dia a dia de um economista, por isso, faço questão de ensinar meus alunos a coletar e tratar dados nos nossos cursos de Teoria Macroeconômica e Análise de Conjuntura usando o R. A maioria nunca viu esse tipo de coisa nos cursos de macroeconomia da faculdade...

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.