Inteligência Artificial no mercado financeiro

De forma que se possa tomar as melhores decisões de investimento, realiza-se cálculos numéricos complexos de forma que possamos mitigar o risco ou maximizar o retorno. E para caso não queiramos utilizar métodos numéricos? Podemos utilizar nosso conhecimento subjetivo para tomar as decisões. Apesar de complicado para a mente humana, é possível criarmos uma inteligência que segue uma lógica qualitativa e pode auxiliar na criação de uma estratégia de investimento. No post de hoje, mostramos como podemos obter isso através do lógica fuzzy no Python.

 

O objetivo do uso da lógica fuzzy aqui será de traduzir o que os números dizem por meio de palavras, utilizando uma lógica e um aditivo. Iremos utilizar como exemplo o preço e o volume de negociações da ITUB4. A transformação da lógica pode ser obtida como:

  • SE (preço ~ barato) E (volume ~ baixo) ENTÃO (decisão ~ comprar)
  • SE (preço ~ barato) E (volume ~ alto) ENTÃO (decisão ~ comprar)
  • SE (preço ~ ideal) E (volume ~ baixo) ENTÃO (decisão ~ comprar)
  • SE (preço ~ ideal) E (volume ~ ideal) ENTÃO (decisão ~ manter)
  • SE (preço ~ ideal) E (volume ~ alto) ENTÃO (decisão ~ vender)
  • SE (preço ~ caro) E (volume ~ alto) ENTÃO (decisão ~ vender)

Através dessa lógica, podemos construir uma estratégia de investimento em um dado horizonte de tempo. Para isso, utilizaremos algumas biblioteca a nosso favor.

O primeiro passo será obter os dados do preço de fechamento e do volume do ativo. Utilizamos como janela o período entre 2021 e março de 2022. Como queremos construir uma lógica de subjetiva de baixo, ideal e alto, devemos entender através dos dados, calculandos o valores médios, o desvio padrão, os valores mínimos e máximos, bem como os quintis de 25% e 75%.

Definido os valores, montamos a lógica.

Construímos a função de pertinência (que nos auxiliará na construção dos pontos de decisão de compra, venda e manter). Aqui selecionamos o espaço dos dados.

Veja que em alguns pontos utilizamos a criação na "mão" (para as decisões e vol) ao invés dos valores dos quantis da média, isto por conta da quantidade de memória utilizada pelo código. Como forma de exemplificar, utilizamos dados não tão próximos da realidade.

Com o código abaixo, realizamos a fuzzificação da nossa lógica, construídos os pontos das regras da estratégia.

Com as regras em mãos, o que devemos é iterar em cada ponto de tempo a decisão baseada na lógica construída.

Com o código acima, obtemos os pontos de cada decisão criado pela estratégia salvo no objeto dec_fuzzy.

 

Por fim, visualizamos o gráfico com os pontos de cada decisão da estratégia. A infelicidade aqui está que visualmente é possível ver que há somente pontos de compra, o que pode ser irreal, devido ao fato de que utilizamos uma aproximação da distribuição do dados por conta de gargalos computacionais.

Referências

Caetano, M. A. L. (2021). Python e mercado financeiro: Programação para estudantes, investidores e analistas. Brasil: Editora Blucher.

Veja mais sobre nossos cursos aplicado para R e Python!

Nossos cursos oferecem o conhecimento necessário para que você possa adentrar no mundo da Análise de dados e consiga por em prática os seus códigos. Veja todos nossos cursos de Data Science aqui.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.