Category

Macroeconometria

Modelando o IFIX através de Mínimos Quadrados Parciais (PLS)

By | Macroeconometria

A Edição 61 do Clube do Código, que estará disponível para os membros essa semana no repositório privado, busca estimar um modelo via mínimos quadrados parciais para o IFIX, o Índice de Fundos de Investimentos Imobiliários. Segundo a B3, "O IFIX é o resultado de uma carteira teórica de ativos, elaborada de acordo com os critérios estabelecidos nesta metodologia. O objetivo do IFIX é ser o indicador do desempenho médio das cotações dos fundos imobiliários negociados nos mercados de bolsa e de balcão organizado da B3".

A opção por mínimos quadrados parciais para modelar a variável se dá devido a grande quantidade de preditores utilizados, entre variáveis reais de desempenho da economia brasileira e variáveis eminentemente financeiras, com relação entre si. A modelagem via mínimos quadrados ordinários implicaria, assim, em problemas de multicolinearidade.

Uma vez escolhidos os preditores e estimado o modelo dentro da amostra de treino, o ajuste do modelo nos pareceu satisfatório, como mostra o gráfico acima. Isso foi confirmado por medidas de acurácia avaliadas na amostra de teste.

____________________________

O Clube do Código é o projeto de compartilhamento de códigos da Análise Macro. Conheça e apoie o projeto! 

Por que temos juros tão altos: uma resposta econométrica

By | Macroeconometria

Na Edição 60 do Clube do Código, construímos um modelo simples que explica a trajetória do spread bancário no Brasil. O spread é a diferença entre as taxas de captação e de empréstimo bancário, que é sistematicamente mais elevado no país do que a evidência internacional. De modo a entender essa anomalia, utilizamos como variáveis explicativas para o spread as provisões dos bancos, compulsórios bancários, taxa de inadimplência, taxa Selic e taxa de desemprego. Abaixo o ajuste do modelo.

O modelo que construímos tem um R^2 de 0,96, o que significa que o mesmo consegue explicar 96% da variação na nossa variável de interesse. Abaixo, colocamos uma tabela que resume os resultados encontrados.

Dependent variable:
spread
provisoes 1.232**
(0.512)
compulsorio 0.007**
(0.003)
inadimplencia 1.338***
(0.386)
selic 0.559***
(0.030)
desemprego 0.559***
(0.115)
Constant -7.509***
(1.426)
Observations 84
R2 0.962
Adjusted R2 0.960
Note: *p<0.1; **p<0.05; ***p<0.01

Como se depreende da tabela, todas as variáveis foram estatisticamente significativas para explicar o spread bancário. Em particular, os resultados encontrados sugerem que um aumento de 1 p.p. na taxa de inadimplência faz o spread bancário aumentar em 1,33 p.p.

Como de praxe, os códigos do exercício estão disponíveis no repositório do Clube do Código.

____________________

ps: estamos aqui na Análise Macro com inscrições abertas para os cursos de Macro Aplicada e para a Formação em Produção de Trabalhos Empíricos usando o R, onde você aprende a lidar com dados da forma que eu mostrei no post com o uso do R. O primeiro lote está com 30% de desconto, mas deve acabar logo, então corre e se inscreve logo!  

Qual a relação entre o saldo do CAGED e o crescimento do PIB?

By | Macroeconometria

Na Edição 58 do Clube do Código, verificamos a relação entre o saldo do CAGED e o crescimento do PIB por meio de duas metodologias. Na primeira, verificamos as funções impulso-resposta extraídas de um modelo BVAR com *prior* de Minnesota. Na segunda, estimamos um Vetor de Correção de Erros (VEC), de forma a obter também funções de impulso-resposta, além da decomposição de variância. Por fim, estimamos um teste de Wald de forma a verificar precedência temporal entre as séries.

Os resultados encontrados sugerem, de forma bastante forte, que existe causalidade no sentido do saldo do CAGED para o crescimento do PIB. Para a decomposição de variância, passados 12 períodos, o saldo do CAGED explica mais de 95% da variância no crescimento do PIB.

_______________________

(*) Todos os códigos estarão disponíveis daqui a pouco no repositório privado do Clube do Código.

(**) Essa e outras análises, você aprende em nosso Curso de Séries Temporais usando o R.

Construindo previsões combinadas para a taxa de desemprego brasileira

By | Macroeconometria

Na seção 14 do nosso curso de Construção de Cenários e Previsões usando o R, ensinamos os alunos a construir previsões combinadas de diversos modelos. É bastante consensual na literatura de que previsões combinadas tendem a ser melhores do que previsões individuais, uma vez que elas podem incorporar as características de diversos modelos. Com base nesse pressuposto, na edição 53 do Clube do Código construímos uma previsão combinada para a taxa de desemprego brasileira, medida pela PNAD Contínua, com base no EQM de três modelos: SARIMA, Filtro de Kalman e BVAR. Os resultados encontrados corroboram com a literatura, como resumo nesse post.

Para o exercício, pegamos uma amostra que vai de março de 2013 a janeiro de 2019. De forma a construir o EQM, dividimos a amostra em duas, uma para gerar os modelos e outra para o gerar as previsões. Abaixo uma tabela que compara algumas métricas de avaliação dos três modelos estimados.

 

Acurácia dos Modelos
  ME RMSE MAE MPE MAPE ACF1 Theil's U
SARIMA 0.28 0.38 0.28 2.41 2.41 0.51 1.70
Kalman -0.11 0.17 0.15 -0.95 1.26 0.42 0.70
BVAR 0.22 0.42 0.24 1.86 1.98 0.25 1.89
Combinada -0.07 0.17 0.16 -0.56 1.33 0.40 0.71

 

De fato, as previsões combinadas são as que possuem os menores erros, por praticamente todas as métricas de avaliação. Abaixo, para ilustrar, colocamos as previsões para seis meses dos três modelos e a combinação entre eles feita pelo inverso do EQM.

 

Previsões para a Taxa de Desemprego
  SARIMA Kalman BVAR Combinada
2019 Feb 12.6 12.4 11.9 12.3
2019 Mar 13.1 13.0 11.8 12.8
2019 Apr 12.9 12.8 11.8 12.6
2019 May 12.6 12.6 11.7 12.5
2019 Jun 12.3 12.4 11.5 12.3
2019 Jul 12.1 12.4 11.4 12.3

 

O exercício está disponível no repositório privado do Clube do Código no github.

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

Medindo o efeito da incerteza sobre variáveis macroeconômicas

By | Macroeconometria

Na edição 52 do Clube do Código, ampliamos nosso entendimento sobre o efeito da incerteza sobre variáveis macroeconômicas. Utilizando um modelo BVAR com uma prévia de Minnesota, nós construímos funções impulso-resposta, dando ênfase a um impulso sobre a incerteza e a resposta no crescimento do PIB, nos juros e na inflação - saiba como construir esse tipo de análise em nosso Curso de Séries Temporais usando o R. Novamente, como proxy para a incerteza, utilizamos o Índice de Incerteza Econômica da Fundação Getúlio Vargas.

Acima, estão destacadas as funções impulso-resposta selecionadas. Como se observa, o efeito de um choque na incerteza sobre o crescimento da economia permanece sendo negativo, com o seu pico ocorrendo próximo a quatro trimestres do início. O efeito sobre a inflação - nesse caso a versão acumulada em 12 meses - não parece ser significativo. Já o efeito sobre a taxa básica de juros é, curiosamente, negativo; isto é, a evidência encontrada sugere que o Banco Central reduz juros na eminência de um choque de incerteza.

Todo o processo de coleta, tratamento, modelagem e apresentação dos dados (feita em RMarkdown) está detalhado na edição 52 do Clube do Código.

 

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente
{"cart_token":"","hash":"","cart_data":""}