Mercado Financeiro

Imagine escrever seu relatório, analisar e apresentar os dados com código de Python usando apenas uma interface, sem copia e cola e sem quebra galhos? A ferramenta Quarto proporciona exatamente isso, permitindo que o usuário desenvolva seu relatório mesclando texto, imagens, tabelas e códigos em um único documento fonte. No final, o usuário pode compilar o documento e gerar um PDF, um HTML, apresentação de slides, etc. Neste exercício mostramos como usar essa ferramenta para a criação de um Relatório de Ações.
Em nosso cotidiano profissional, identificar maneiras de otimizar processos é essencial para aumentar a produtividade. Em particular, focalizar nas etapas mais demoradas pode render grandes benefícios. Neste artigo, exploramos como o Python se destaca como uma ferramenta valiosa para aprimorar a eficiência no trabalho, especialmente ao simplificar e agilizar a coleta de dados, uma etapa extremamente importante na análise de dados.
A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.
“‘Aprender com os dados’ é uma definição fundamental dos modelos de aprendizado de máquina. Mas e se pudéssemos aplicar esse conceito às estratégias de investimento? Aqui, vamos explorar exatamente isso. Vamos introduzir um exercício de Python que utiliza Deep Neural Networks (DNNs) para prever os movimentos do mercado financeiro, com base em valores históricos de log-retornos como dados de entrada.
O aprendizado de máquina (ML) é visto como parte da inteligência artificial. Algoritmos de ML constroem um modelo com base em dados de treinamento para fazer previsões ou decisões sem serem explicitamente programados para fazê-lo. Neste exercício, usamos o Python para aplicar modelos de ML conhecidos como random forests e neural networks a uma aplicação simples na precificação de opções: o treinamento dos modelos para aprender a precificar opções de compra sem conhecimento prévio dos fundamentos teóricos da famosa equação de precificação de opções de Black e Scholes (1973).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.