A utopia do emprego com carteira assinada

O emprego com carteira assinada nunca foi algo universal no Brasil. Mesmo no melhor momento do mercado de trabalho, quando a taxa de desemprego chegou à sua mínima histórica, a formalização flertou próxima a 40% da população ocupada. O gráfico abaixo ilustra a distribuição das diferentes categorias de emprego na população ocupada.

O emprego com e sem carteira no gráfico refere-se ao emprego privado. O emprego com carteira representa algo como 35% da população ocupada, enquanto a categoria conta própria chega a 26% e os sem carteira com 12%,5%, para o último dado disponível.

De modo a ilustrar o comportamento da formalização dentro da população ocupada, eu fiz um exercício simples de ampliar a PNAD a partir dos dados da PME. Isso é necessário porque os dados da PNAD estão disponíveis a partir de março de 2012 apenas. Com efeito, ampliei a razão entre emprego privado com carteira assinada e população ocupada total da PNAD com base na mesma razão contida na PME, gerando uma série com dados desde 2002. O gráfico a seguir ilustra.

Como é possível observar, o pico da série ocorre no auge do mercado de trabalho, quando o desemprego está na mínima histórica. Mesmo nesse momento, o emprego privado com carteira assinada representava apenas 40% da população ocupada.

_______________

(*) Os códigos do exercício estarão disponíveis amanhã na Edição 72 do Clube do Código.

(**) Aprenda a fazer análises como essa com nossos Cursos Aplicados de R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.