Acessando microdados da PNAD Contínua no R

Os microdados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNADC), produzida pelo IBGE, possuem uma riqueza enorme de informação de um conjunto de indicadores relacionados à força de trabalho no país, constituindo um verdadeiro tesouro para economistas e cientistas sociais. Esse grande volume de dados exige, por consequência, o uso de ferramentas adequadas para o tratamento, análise, visualização e sua utilização em geral. Em suma, é necessário utilizar linguagens de programação para "colocar a mão" nesses dados e, neste exercício, mostraremos como fazer isso usando o R.

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:

1)  Importar microdados trimestrais  

Para começar o exercício, vamos importar os microdados para o environment do R usando o pacote PNADcIBGE - que foi desenvolvido pela própria equipe do IBGE. Os microdados trimestrais serão o alvo do nosso exemplo: apontamos na função get_pnadc o último período (ano/trimestre) disponível da pesquisa e, opcionalmente, as variáveis de interesse1.

2)  Análise de dados

Após este simples comando de importação executado, os microdados da PNADC já estão disponíveis para fazermos uma análise. A função, inclusive, já configura o plano amostral internamente através do argumento design = TRUE - mas o usuário pode desabilitar para obter os dados brutos -, sendo assim podemos usar o pacote survey para obter, por exemplo, o total de homens e mulheres:

Da mesma forma, e com comandos simples, o usuário pode estimar o índice de Gini a nível nacional:

Diversas outras análise podem ser feitas, como esta publicada no blog da Análise Macro:

Saiba mais

Para saber mais e se aprofundar confira o blog da Análise Macro e os cursos aplicados de R e Python, especialmente:

 


[1] Note que os microdados consomem espaço excepcionalmente grande na memória do computador, portanto, evite a importação sem nenhum tipo de filtro de variáveis.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.