Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Como funciona a automação

Na Imersão Econometria vs. IA na Previsão Macro, você vai ver na prática como conectar dados de várias fontes públicas e manter tudo atualizado com apenas alguns comandos Python.

O código utiliza uma planilha de metadados centralizada, onde cada série tem seu identificador, fonte e frequência (Diária, Mensal, Trimestral, etc.). A partir dela, as funções de coleta percorrem automaticamente cada API:

  • BCB/SGS – coleta séries econômicas via https://api.bcb.gov.br/

  • BCB/ODATA – acessa previsões e estatísticas como Focus e Selic

  • IPEADATA – integra séries históricas de indicadores fiscais, PIB e mercado de trabalho

  • IBGE/SIDRA – traz dados das pesquisas econômicas e sociais com tratamento automático de valores faltantes

  • FRED/IFI – amplia o contexto internacional e insere indicadores de hiato do produto

Cada função é projetada para lidar com falhas de rede, intervalos de datas extensos e diferenças de formato, garantindo resiliência e replicabilidade — algo essencial em pipelines de produção de dados.

O que você vai aprender na imersão

Durante a imersão, você verá passo a passo:

  • Como estruturar uma planilha de metadados para automatizar a coleta de dados macroeconômicos;

  • Como usar APIs públicas (BCB, IBGE, IPEA) de forma robusta;

  • Como integrar tudo em um data lake econômico pronto para modelagem;

  • E como esse pipeline serve de base para comparar modelos de Econometria, Machine Learning e Inteligência Artificial na previsão de variáveis macro.

Por que isso importa

Automatizar a coleta e integração de dados é o primeiro passo para escalar previsões macroeconômicas e construir agentes de IA econometristas capazes de aprender continuamente.
Em vez de gastar horas baixando planilhas e limpando dados, você foca no que realmente gera valor: modelar, interpretar e decidir.


👉 Quer aprender a criar seu próprio pipeline econômico automatizado e comparar modelos econométricos e de IA?
Inscreva-se na Imersão “Econometria vs. IA na Previsão Macro” e dê o próximo passo rumo à previsão inteligente.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.