Acessando e visualizando dados do COVID-19 no Brasil

Para o Dicas de R dessa semana, vamos ensinar a baixar os dados sobre número de casos e óbitos de COVID de duas fontes, o repositório covid19br, e os datasets da plataforma brasil.io. Para fazer o download dos dados, basta acessar os arquivos CSV disponíveis online. Note que, no caso do brasil.io, os dados estão comprimidos, logo iremos utiilizar o pacote vroom, que baixa e extrai automaticamente as tabelas.

#não rodado
#dados_covid19br <- read.csv("https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-states.csv")
dados_covid <- vroom::vroom("https://data.brasil.io/dataset/covid19/caso_full.csv.gz")

dados_obitos <- vroom::vroom("https://data.brasil.io/dataset/covid19/obito_cartorio.csv.gz")

Primeiramente, vamos analisar a trajetória do número de casos em território nacional. Como de costume, vamos utilizar a média móvel de 7 dias para suavizar os dados.

library(tidyverse)
library(RcppRoll)
library(ggplot2)
library(ggthemes)

dados_covid %>% filter(place_type == "state") %>%
group_by(date) %>% summarise(total=sum(new_confirmed)) %>%
mutate(casos = roll_meanr(total, n=7)) %>%
ggplot(aes(x=date, y=casos)) + geom_line(size=1.05) +
scale_x_date("", breaks = "1 month", minor_breaks = "2 weeks", date_labels = "%b %y") +
scale_y_continuous("Número de casos novos (em milhares)", breaks = seq(0, 150000, 25000), labels =
seq(0, 150, 25)) +
labs(title=('Evolução do número de casos de COVID-19 em território nacional')) +
theme_bw()

Além do número de casos, é interessante colocar em perspectiva o número de mortes causadas por COVID-19 em relação ao total de mortes do país. É claro que, além dos valores registrados, devemos ter em mente a existência de subidentificação do número de casos e óbitos, logo a proporção apresentada aqui deve ser considerada conservadora. Para fazermos a análise, vamos acessar os dados de óbitos registrados em cartórios por todo o país. Devido a limitações do dataset atualmente disponível no brasil.io, vamos restringir a visualização até 30/12/2020.


dados_2020 <- dados_obitos %>% group_by(date) %>%
summarise(deaths_covid = sum(new_deaths_covid19, na.rm = TRUE),
deaths_sars = sum(new_deaths_sars_2020, na.rm = TRUE),
deaths_others = sum(new_deaths_others_2020, na.rm = TRUE),
deaths_septicemia = sum(new_deaths_septicemia_2020, na.rm = TRUE),
deaths_pneumonia = sum(new_deaths_pneumonia_2020, na.rm = TRUE),
deaths_indeterminate = sum(new_deaths_indeterminate_2020, na.rm = TRUE),
deaths_respiratory = sum(new_deaths_respiratory_failure_2020, na.rm = TRUE),
deaths_total = sum(new_deaths_total_2020, na.rm = TRUE))

dados_2019 <- dados_obitos %>% group_by(date) %>%
summarise(deaths_covid = 0,
deaths_sars = sum(new_deaths_sars_2019, na.rm = TRUE),
deaths_others = sum(new_deaths_others_2019, na.rm = TRUE),
deaths_septicemia = sum(new_deaths_septicemia_2019, na.rm = TRUE),
deaths_pneumonia = sum(new_deaths_pneumonia_2019, na.rm = TRUE),
deaths_indeterminate = sum(new_deaths_indeterminate_2019, na.rm = TRUE),
deaths_respiratory = sum(new_deaths_respiratory_failure_2019, na.rm = TRUE),
deaths_total = sum(new_deaths_total_2019, na.rm = TRUE))

agregado <- rbind(dados_2019, dados_2020) %>%
mutate(date = seq(from = as.Date("2019-01-01"), to = as.Date("2021-01-01"), by = 'day'))

agregado %>% select(-deaths_total) %>%
mutate(across(-date, function(x) roll_meanr(x, n=7))) %>%
pivot_longer(-date, names_to = "variavel", values_to = "valor") %>%
ggplot(aes(x=date, y=valor, fill = variavel))+
geom_col(position = "fill") +
scale_y_continuous(labels = scales::percent)+
scale_fill_manual(values = c("#2b1a6e", "#22bfbb", "#33e8e2",
"#6492e8", "#86bfb6", "#4b3a70",
"#609fc4"),
labels = c("Mortes por COVID-19", "Mortes de causa indeterminada",
"Mortes por outras causas", "Mortes de pneumonia",
"Mortes por problemas respiratórios",
"Mortes de SRAG", "Mortes de sepse")) +
scale_x_date(date_breaks = "3 months", date_labels = "%b %y") +
labs(title = "Distribuição dos óbitos diários entre 2019 e 2020 por causa de morte",
caption = "Fonte: Análise Macro com dados do brasil.io") +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.caption = element_text(hjust = 2, face= "italic"),
axis.text.y = element_text(margin = margin(t = 0, r = -15, b = 0, l = 0)),
axis.ticks.y = element_blank()
)

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.