Acessando e visualizando dados do COVID-19 no Brasil

Para o Dicas de R dessa semana, vamos ensinar a baixar os dados sobre número de casos e óbitos de COVID de duas fontes, o repositório covid19br, e os datasets da plataforma brasil.io. Para fazer o download dos dados, basta acessar os arquivos CSV disponíveis online. Note que, no caso do brasil.io, os dados estão comprimidos, logo iremos utiilizar o pacote vroom, que baixa e extrai automaticamente as tabelas.

#não rodado
#dados_covid19br <- read.csv("https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-states.csv")
dados_covid <- vroom::vroom("https://data.brasil.io/dataset/covid19/caso_full.csv.gz")

dados_obitos <- vroom::vroom("https://data.brasil.io/dataset/covid19/obito_cartorio.csv.gz")

Primeiramente, vamos analisar a trajetória do número de casos em território nacional. Como de costume, vamos utilizar a média móvel de 7 dias para suavizar os dados.

library(tidyverse)
library(RcppRoll)
library(ggplot2)
library(ggthemes)

dados_covid %>% filter(place_type == "state") %>%
group_by(date) %>% summarise(total=sum(new_confirmed)) %>%
mutate(casos = roll_meanr(total, n=7)) %>%
ggplot(aes(x=date, y=casos)) + geom_line(size=1.05) +
scale_x_date("", breaks = "1 month", minor_breaks = "2 weeks", date_labels = "%b %y") +
scale_y_continuous("Número de casos novos (em milhares)", breaks = seq(0, 150000, 25000), labels =
seq(0, 150, 25)) +
labs(title=('Evolução do número de casos de COVID-19 em território nacional')) +
theme_bw()

Além do número de casos, é interessante colocar em perspectiva o número de mortes causadas por COVID-19 em relação ao total de mortes do país. É claro que, além dos valores registrados, devemos ter em mente a existência de subidentificação do número de casos e óbitos, logo a proporção apresentada aqui deve ser considerada conservadora. Para fazermos a análise, vamos acessar os dados de óbitos registrados em cartórios por todo o país. Devido a limitações do dataset atualmente disponível no brasil.io, vamos restringir a visualização até 30/12/2020.


dados_2020 <- dados_obitos %>% group_by(date) %>%
summarise(deaths_covid = sum(new_deaths_covid19, na.rm = TRUE),
deaths_sars = sum(new_deaths_sars_2020, na.rm = TRUE),
deaths_others = sum(new_deaths_others_2020, na.rm = TRUE),
deaths_septicemia = sum(new_deaths_septicemia_2020, na.rm = TRUE),
deaths_pneumonia = sum(new_deaths_pneumonia_2020, na.rm = TRUE),
deaths_indeterminate = sum(new_deaths_indeterminate_2020, na.rm = TRUE),
deaths_respiratory = sum(new_deaths_respiratory_failure_2020, na.rm = TRUE),
deaths_total = sum(new_deaths_total_2020, na.rm = TRUE))

dados_2019 <- dados_obitos %>% group_by(date) %>%
summarise(deaths_covid = 0,
deaths_sars = sum(new_deaths_sars_2019, na.rm = TRUE),
deaths_others = sum(new_deaths_others_2019, na.rm = TRUE),
deaths_septicemia = sum(new_deaths_septicemia_2019, na.rm = TRUE),
deaths_pneumonia = sum(new_deaths_pneumonia_2019, na.rm = TRUE),
deaths_indeterminate = sum(new_deaths_indeterminate_2019, na.rm = TRUE),
deaths_respiratory = sum(new_deaths_respiratory_failure_2019, na.rm = TRUE),
deaths_total = sum(new_deaths_total_2019, na.rm = TRUE))

agregado <- rbind(dados_2019, dados_2020) %>%
mutate(date = seq(from = as.Date("2019-01-01"), to = as.Date("2021-01-01"), by = 'day'))

agregado %>% select(-deaths_total) %>%
mutate(across(-date, function(x) roll_meanr(x, n=7))) %>%
pivot_longer(-date, names_to = "variavel", values_to = "valor") %>%
ggplot(aes(x=date, y=valor, fill = variavel))+
geom_col(position = "fill") +
scale_y_continuous(labels = scales::percent)+
scale_fill_manual(values = c("#2b1a6e", "#22bfbb", "#33e8e2",
"#6492e8", "#86bfb6", "#4b3a70",
"#609fc4"),
labels = c("Mortes por COVID-19", "Mortes de causa indeterminada",
"Mortes por outras causas", "Mortes de pneumonia",
"Mortes por problemas respiratórios",
"Mortes de SRAG", "Mortes de sepse")) +
scale_x_date(date_breaks = "3 months", date_labels = "%b %y") +
labs(title = "Distribuição dos óbitos diários entre 2019 e 2020 por causa de morte",
caption = "Fonte: Análise Macro com dados do brasil.io") +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.caption = element_text(hjust = 2, face= "italic"),
axis.text.y = element_text(margin = margin(t = 0, r = -15, b = 0, l = 0)),
axis.ticks.y = element_blank()
)

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.