Análise da violência no Rio com o R

O Instituto de Segurança Pública (ISP) disponibiliza uma série de dados relacionados à violência no Rio de Janeiro. Nesse post, mostro como coletar e visualizar alguns desses dados com o R. A seguir, baixamos os dados mensais referentes à várias métricas de violência no Estado.


#####################################################
##### Segurança Pública no Rio de Janeiro ###########
#####################################################

library(readr)
library(lubridate)
library(magrittr)
library(dplyr)
library(ggplot2)
library(scales)
library(BMR)

url = 'http://www.ispdados.rj.gov.br/Arquivos/DOMensalEstadoDesde1991.csv'
download.file(url, destfile='basededados.csv', mode='wb')
data = read_csv2('basededados.csv') %>%
mutate(date = make_datetime(vano, mes))

Uma vez que baixamos e lemos os dados do ISP, nós também criamos um vetor de datas a partir do próprio dataset. A seguir, visualizamos alguns dados referentes a homicídios e outros crimes relacionados.

A seguir, visualizamos crimes associados a roubos.

Por fim, visualizamos os homicídios associados a intervenções policiais.

Como mostra o bloxplot abaixo, os dados de homicídios por intervenção policial na ponta estão bem acima da mediana histórica. É realmente um número preocupante.

____________________________

Aprenda a fazer isso e muito mais com o R com o nosso Curso de Introdução ao R para Análise de Dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como medir a comunicação do Banco Central?

Descubra como o índice ALT transforma a linguagem do Banco Central em dados analisáveis, permitindo investigar como o tom das atas do COPOM varia conforme o cenário macroeconômico e as decisões de política monetária.

Análise de Séries Temporais com a Linguagem R: dados ISP-RJ

Neste tutorial, vamos conduzir uma análise diagnóstica completa. Começaremos visualizando a série e sua tendência, depois a decomporemos em seus componentes fundamentais. Em seguida, investigaremos a distribuição estatística dos dados e, por fim, aplicaremos técnicas mais avançadas, como a análise de autocorrelação e testes de estacionariedade, que são pré-requisitos cruciais para a construção de modelos de previsão robustos como o ARIMA.

Análise de dados com a Linguagem R: Segurança no Rio de Janeiro

Neste post, criamos um tutorial prático que guia você através do ciclo completo de análise de dados, desde a coleta e tratamento até a visualização e comunicação de resultados. Utilizando a linguagem R, o ecossistema tidyverse e a ferramenta de publicação Quarto, analisamos a base de dados de criminalidade do Instituto de Segurança Pública (ISP) do Rio de Janeiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.