Covid-19: e se deixássemos a doença tomar o seu curso?

Na terça-feira, publiquei o nosso comentário de conjuntura semanal com um modelo SIR ajustado aos dados do Brasil. Para quem quiser replicar, todos os códigos de R foram disponibilizados, de modo que o post é totalmente reprodutível. Já aqui, quero apresentar as curvas geradas pelo modelo, considerando um horizonte de 90 dias.

O modelo divide a população em compartimentos, como ilustra a figura a seguir.

As pessoas são suscetíveis à doença, depois infectadas e, por fim, recuperadas. Ao deixar a doença tomar seu curso, sem fazer nada a respeito, o total de infectados atingiria seu pico no início de maio, se reduzindo ao longo das semanas seguintes. O número do pico fica pouco abaixo de 24 milhões de pessoas, com todas as consequências conhecidas sobre o sistema de saúde.

Como o país está tomando medidas de distanciamento social, o pico de infectados deve ocorrer antes disso, em meados de abril e com um número menor.

(*) Aprenda a rodar modelos como esse ao aprender R em nossos Cursos Aplicados de R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.