CAGED volta ao terreno positivo

Em meio ao caos que se tornou a macroeconomia brasileira, um momento positivo nos últimos dias foi a divulgação dos dados do Novo CAGED (ver sobre aqui) referente a julho. Após quatro meses de saldo entre admitidos e demitidos negativo, julho teve saldo positivo de 131 mil. Abaixo, coletamos os dados do Novo CAGED a partir do IPEADATA com o pacote ecoseries.


################################################
######## Análise do CAGED com o R ##############

library(ecoseries)
library(tidyverse)
library(scales)
library(seasonal)

#### Coleta de Dados via IPEADATA ####

## Baixar dados do Novo Caged
saldo_novocaged = series_ipeadata("2096725336", periodicity = 'M')$serie_2096725336
admitidos_novocaged = series_ipeadata("2096725334", periodicity = 'M')$serie_2096725334
demitidos_novocaged = series_ipeadata("2096725335", periodicity = 'M')$serie_2096725335

Como é possível observar, estou pegando os dados Novo CAGED diretamente do IPEADATA. É o início do script desse tema que ensino no nosso Curso de Análise de Conjuntura usando o R. Com base no novo CAGED, podemos gerar o gráfico abaixo.

Em 2020, o resultado líquido está em mais de 1 milhão de vagas perdidas.

____________________

(*) Você aprende a coletar, tratar, analisar e apresentar dados com o R em nossos Cursos Aplicados de R.

(**) Os alunos do plano premium dos nossos Cursos Aplicados de R  têm acesso a mais de 70 exercícios do Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.