Como coletar dados do Boletim Focus com o Python

O Boletim Focus é uma pesquisa realizada pelo Banco Central do Brasil, que divulga semanalmente as projeções de diversos indicadores macroeconômicos do país. A pesquisa é extremamente útil para entender a conjuntura econômica do país. Para coletar os dados do relatório, podemos utilizar a biblioteca {python-bcb}, que realiza a conexão com a API do Banco Central e permite realizar a importação dos dados direto para o Python.

Para utilizar o {python-bcb} é extremamente simples. Primeiro devemos carregar o módulo Expectativas e utilizar suas funções e métodos para realizar a importação.

Utilizamos a função Expectativas() para instanciar com as informações da pesquisa. Salvamos em objeto com o nome "em" para utilizar o método describe() de forma a obtermos as pesquisas disponíveis e conectar com a que desejamos. No caso, queremos obter informações das Expectativas Anuais.

Com as informações conhecidas sobre o data frame a ser importado, utilizamos o método get_endpoint() para conectar com a API do Banco Central e executar a consulta com .query()

Em conjunto com query(), utilizamos os métodos do pandas de forma a obter os dados já tratados, com os dados da expectativas do IPCA do ano referente a 2023, coletados em 2022.

Por fim, obtemos o data frame com a Media e a Mediana das projeções divulgadas pelo Boletim Focus nas semanas ao longo de 2022. Abaixo, criamos o gráfico para representar a evolução do indicador.

________________________________________

Quer saber mais?

Participe do lançamento do nosso Curso de Análise de Conjuntura usando R e Python.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.