Como coletar dados do Boletim Focus com o Python

O Boletim Focus é uma pesquisa realizada pelo Banco Central do Brasil, que divulga semanalmente as projeções de diversos indicadores macroeconômicos do país. A pesquisa é extremamente útil para entender a conjuntura econômica do país. Para coletar os dados do relatório, podemos utilizar a biblioteca {python-bcb}, que realiza a conexão com a API do Banco Central e permite realizar a importação dos dados direto para o Python.

Para utilizar o {python-bcb} é extremamente simples. Primeiro devemos carregar o módulo Expectativas e utilizar suas funções e métodos para realizar a importação.

Utilizamos a função Expectativas() para instanciar com as informações da pesquisa. Salvamos em objeto com o nome "em" para utilizar o método describe() de forma a obtermos as pesquisas disponíveis e conectar com a que desejamos. No caso, queremos obter informações das Expectativas Anuais.

Com as informações conhecidas sobre o data frame a ser importado, utilizamos o método get_endpoint() para conectar com a API do Banco Central e executar a consulta com .query()

Em conjunto com query(), utilizamos os métodos do pandas de forma a obter os dados já tratados, com os dados da expectativas do IPCA do ano referente a 2023, coletados em 2022.

Por fim, obtemos o data frame com a Media e a Mediana das projeções divulgadas pelo Boletim Focus nas semanas ao longo de 2022. Abaixo, criamos o gráfico para representar a evolução do indicador.

________________________________________

Quer saber mais?

Participe do lançamento do nosso Curso de Análise de Conjuntura usando R e Python.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.