Como coletar dados do Boletim Focus com o Python

O Boletim Focus é uma pesquisa realizada pelo Banco Central do Brasil, que divulga semanalmente as projeções de diversos indicadores macroeconômicos do país. A pesquisa é extremamente útil para entender a conjuntura econômica do país. Para coletar os dados do relatório, podemos utilizar a biblioteca {python-bcb}, que realiza a conexão com a API do Banco Central e permite realizar a importação dos dados direto para o Python.

Para utilizar o {python-bcb} é extremamente simples. Primeiro devemos carregar o módulo Expectativas e utilizar suas funções e métodos para realizar a importação.

Utilizamos a função Expectativas() para instanciar com as informações da pesquisa. Salvamos em objeto com o nome "em" para utilizar o método describe() de forma a obtermos as pesquisas disponíveis e conectar com a que desejamos. No caso, queremos obter informações das Expectativas Anuais.

Com as informações conhecidas sobre o data frame a ser importado, utilizamos o método get_endpoint() para conectar com a API do Banco Central e executar a consulta com .query()

Em conjunto com query(), utilizamos os métodos do pandas de forma a obter os dados já tratados, com os dados da expectativas do IPCA do ano referente a 2023, coletados em 2022.

Por fim, obtemos o data frame com a Media e a Mediana das projeções divulgadas pelo Boletim Focus nas semanas ao longo de 2022. Abaixo, criamos o gráfico para representar a evolução do indicador.

________________________________________

Quer saber mais?

Participe do lançamento do nosso Curso de Análise de Conjuntura usando R e Python.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.