Construindo relatórios econômicos com o Python

O Python é uma ferramenta muito útil para a criação de análise de dados, principalmente os econômicos, e uma etapa importante do processo encontra-se na comunicação dos resultados. No post de hoje, mostraremos como criar relatórios econômicos com o Python.

A criação de relatórios reside na constituição dos resultados dos códigos produzidos, e para tanto, é necessário ter um objeto de estudo econômico (por exemplo, um indicador econômico específico), passando por todo o processo de análise de dados:

  • Coleta e importação
  • Tratamento
  • Visualização
  • Modelagem (se houver)
  • Comunicação (criação do relatório)

Iremos focar somente na última etapa, de criação do relatório, tomando como pronto todas as etapas anteriores. Para tanto, usaremos uma análise do IPCA para constituir o relatório.

Mas como criar o relatório? Para isso é possível utilizar o Quarto, software produzido pela POSIT (antiga Rstudio), que possibilita a criação de documentos pdf, docx, epub, blog, site e diversos outros formatos a partir de arquivos produzidos pelo próprio Quarto e mesmo por um notebook.

Quarto

Como baixar o Quarto

O Quarto pode ser utilizado com diferentes linguagens e também por meio de diversos IDEs: VS Code; Rstudio; Jupyter e Text Editor, neste post, ensinaremos a utilizar o aplicativo através do VS Code.

VS Code

Com o VS Code, é necessário utilizar o Marketplace do software para instalar e integrar o Quarto. Dentro da aba do Marketplace, é só realizar a pesquisa por Quarto e clicar em "Install".

Quarto e o arquivo. qmd

O script criado pelo Quarto possui o formato .qmd, e seu layout possui uma configuração YAML, um corpo de texto escrito em Markdown e os respectivos blocos de códigos sendo criados por meio do R, Python e Julia.

Abaixo, temos a criação de um arquivo no forma .qmd e seus componentes, representando a análise do IPCA.

A primeira parte de cima, separada por traços, é chamada de cabeçalho YAML, nesse local é inserido toda a configuração do documento produzido e seus elementos, desde o título até o formato do resultado renderizado. Para o caso do PDF, é necessário instalar o tinytex no VS Code, utilizando o código quarto install tool tinytex

Em seguida, é construído o texto do documento, no qual segue os princípios do Markdown.

E por fim, há a criação do bloco de código chamado de Chunk. Em cada bloco é possível escolher uma linguagem diferente (dependendo do IDE é possível criar relatórios com R e Python em conjunto!). No caso abaixo, criamos a análise a partir do Python e em cada bloco realizamos os procedimentos de criação do código: Importando as bibliotecas; Coletando os dados; Tratamento e Visualização.

Para obter entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

O resultado será um documento igual o abaixo:

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.