Estimando o juro neutro da economia brasileira a partir da NTN-B

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Uma das discussões de conjuntura no mundo dos economistas é saber qual a taxa de juros neutra ou de equilíbrio da economia brasileira. O juro neutro é aquele que não fornece pressões inflacionárias ou deflacionárias sobre o organismo econômico. Dado o atual ciclo de flexibilização da política monetária, que temos discutido na seção Copom Watch desse espaço, torna-se particularmente relevante para o policymaker saber até onde o juro efetivo (dado pela taxa Selic) pode ir, de modo a não gerar impulso expansionista excessivo, que teria de ser revertido logo em seguida. Na edição 29 do Clube do Código, vamos obter uma estimativa de juro neutro com base na NTN-B com vencimento em 2045, um dos títulos públicos à disposição do investidor no país. Abaixo um resumo do exercício.

Para isso, vamos usar o pacote GETTDData para pegar os dados de título público, como no código abaixo.

library(GetTDData)

download.TD.data('NTN-B')
ntnb45 = read.TD.files(dl.folder = 'TD Files', 
 maturity = '150545')

Uma vez que tenhamos baixado e lido os arquivos, podemos montar um gráfico rápido para mostrar o comportamento da taxa de juros associada à NTN-B com vencimento em 2045.

Uma vez que tenhamos obtido o dado, nós mensalizamos o mesmo fazendo uso do pacote xts. Depois aplicamos o filtro HP sobre a série mensalizada, obtendo assim uma estimativa de juro neutro, como ilustrado pelo gráfico abaixo.

No último dado da estimativa, o juro neutro estaria em 5,98%. Nos exercícios que temos feito na AM, a zona de juro neutro parece se situar entre 5% e 6%. Os códigos completos do exercício, a propósito, estarão disponíveis amanhã, 20/04, na área restrita do Clube do Código.

 

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-a-econometria/" url_new_window="off" button_text="Curso de Introdução à Econometria usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/series-temporais/" url_new_window="off" button_text="Curso de Séries Temporais usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/macroeconometria/" url_new_window="off" button_text="Curso de Macroeconometria usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.