Estimando o juro neutro da economia brasileira a partir da NTN-B

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Uma das discussões de conjuntura no mundo dos economistas é saber qual a taxa de juros neutra ou de equilíbrio da economia brasileira. O juro neutro é aquele que não fornece pressões inflacionárias ou deflacionárias sobre o organismo econômico. Dado o atual ciclo de flexibilização da política monetária, que temos discutido na seção Copom Watch desse espaço, torna-se particularmente relevante para o policymaker saber até onde o juro efetivo (dado pela taxa Selic) pode ir, de modo a não gerar impulso expansionista excessivo, que teria de ser revertido logo em seguida. Na edição 29 do Clube do Código, vamos obter uma estimativa de juro neutro com base na NTN-B com vencimento em 2045, um dos títulos públicos à disposição do investidor no país. Abaixo um resumo do exercício.

Para isso, vamos usar o pacote GETTDData para pegar os dados de título público, como no código abaixo.

library(GetTDData)

download.TD.data('NTN-B')
ntnb45 = read.TD.files(dl.folder = 'TD Files', 
 maturity = '150545')

Uma vez que tenhamos baixado e lido os arquivos, podemos montar um gráfico rápido para mostrar o comportamento da taxa de juros associada à NTN-B com vencimento em 2045.

Uma vez que tenhamos obtido o dado, nós mensalizamos o mesmo fazendo uso do pacote xts. Depois aplicamos o filtro HP sobre a série mensalizada, obtendo assim uma estimativa de juro neutro, como ilustrado pelo gráfico abaixo.

No último dado da estimativa, o juro neutro estaria em 5,98%. Nos exercícios que temos feito na AM, a zona de juro neutro parece se situar entre 5% e 6%. Os códigos completos do exercício, a propósito, estarão disponíveis amanhã, 20/04, na área restrita do Clube do Código.

 

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-a-econometria/" url_new_window="off" button_text="Curso de Introdução à Econometria usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/series-temporais/" url_new_window="off" button_text="Curso de Séries Temporais usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][et_pb_column type="1_3"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/macroeconometria/" url_new_window="off" button_text="Curso de Macroeconometria usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.