Um modelo SARIMA para os gastos previdenciários

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

A edição 51 do Clube do Código, titulada Tratando dados previdenciários com o R, que foi parcialmente publicada aqui no blog, ensina a coletar e tratar dados agregados de receita e despesa do INSS - é, a propósito, o tipo de coisa que fazemos em nosso Curso de Analise de Conjuntura usando o R. Lá também construímos um modelo univariado SARIMA de previsão para o gasto previdenciário, baseado na metodologia Box-Jenkins - saiba como construir modelos univariados em nosso Curso de Séries Temporais usando o R. O objetivo do exercício é ter uma ideia sobre a evolução do gasto previdenciário em 2019.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2019/02/loteextra2.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Como vimos no post sobre tratamento de dados previdenciários, os gastos do INSS apresentam uma tendência positiva de crescimento ao longo do tempo, além de uma sazonalidade bastante pronunciada. Certamente, por suposto, não é um processo estacionário - veja mais aqui. O tratamento inicial, de acordo com a metodologia Box-Jenkins, é tornar a série estacionária, modelando a mesma em seguida.

Na edição 51 do Clube do Código, por suposto, utilizamos a função auto.arima do pacote forecast de modo a gerar "o melhor modelo" univariado para o gasto previdenciário de acordo com critérios de informação. O resultado foi um modelo ARIMA(0,1,3)(0,1,1)[12]. O gráfico abaixo compara o ajuste desse modelo com a série original.

Com base nesse modelo, geramos uma previsão para 2019. O gráfico abaixo ilustra para três diferentes intervalos de confiança.

As previsões médias do modelo indicam que o gasto previdenciário será de R$ 625,2 bilhões em 2019, variando entre R$ 583,1 bilhões e R$ 667,4 bilhões, ao considerar um intervalo de 95% de confiança. Em termos comparativos, o PLDO 2019 estima o gasto do INSS em R$ 635,4 bilhões. Em outras palavras, pelo nosso modelo, o gasto deve aumentar algo como R$ 38,9 bilhões esse ano, em valores correntes, se comparado a 2018, seguindo a trajetória ascendente.

Para terminar, uma provocação. Dissemos acima que o gasto previdenciário não performa como um processo estacionário. O que isso significa? Significa dizer que o gasto segue, pelo contrário, um processo explosivo de crescimento. Isto é, a tendência é que ele cresça indefinidamente ao longo do tempo, caso nada seja feito - saiba mais em nosso Curso de Séries Temporais usando o R. Justamente por isso é importante que seja feita alguma reforma no sistema de previdência, caso contrário essa rubrica avançará sobre todos os outros gastos do governo ao longo do tempo.

O pdf completo estará disponível no Clube do Código na próxima semana!

_____________________________________

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados com o R!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.