Análise do desemprego por tempo de procura de trabalho com o R

Os dados da PNAD Contínua, no seu corte trimestral, trazem informações relevantes sobre o tempo de procura por emprego entre as pessoas que estão desempregadas. Essa informação é bastante importante para dar uma dimensão sobre o está o que os economistas chamam de desemprego de longo prazo. A tabela 1616 disponível no SIDRA/IBGE contém essas informações. Para acessá-la, podemos usar o pacote sidrar, como abaixo.


## Pacotes utilizados nesse comentário
library(tidyverse)
library(zoo)

table = get_sidra(api='/t/1616/n1/all/v/4092/p/all/c1965/all') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
select(date, "Tempo de procura de trabalho", Valor) %>%
as_tibble()

Com os dados disponíveis, podemos construir o gráfico abaixo.

Os dados do IBGE, entretanto, só estão disponíveis até o primeiro trimestre de 2020.

Os membros do Clube AM, a propósito, têm acesso aos códigos completos dos nossos Comentários e Exercícios.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Modelo de previsão para grupos do IPCA

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Text mining dos comunicados do FOMC: prevendo mudanças na política

Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a "narrativa" com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

Cyber Monday

Receba um desconto incrível em nossos cursos e formações diretamente na finalização da matrícula. Aplique o cupom CM2023.

>> Escolher um curso ou formação