12ª semana de corte no crescimento esperado em 2019!

O boletim Focus, divulgado toda segunda-feira pelo Banco Central, trouxe o 12º corte no crescimento mediano esperado para o crescimento esse ano. Abaixo, usamos o pacote rbcb para coletar os dados diretamente do Banco Central. Em seguida, nós tratamos os mesmos, de modo a colocá-los em um data frame. Algo que ensinamos detalhadamente no nosso Curso de Análise de Conjuntura usando o R.


library(rbcb)
pibe = get_annual_market_expectations('PIB Total',
start_date = '2019-01-04')
pib_esperado = pibe$median[pibe$reference_year=='2019']
pib_esp_min = pibe$min[pibe$reference_year=='2019']
pib_esp_max = pibe$max[pibe$reference_year=='2019']
dates = pibe$date[pibe$reference_year=='2019']

data = data.frame(dates=dates, pib=pib_esperado,
min=pib_esp_min, max=pib_esp_max)

Produzimos um gráfico com o código abaixo.


library(ggplot2)
library(scales)
library(ggrepel)
library(png)
library(grid)
library(gridExtra)

img <- readPNG('logo.png')
g <- rasterGrob(img, interpolate=TRUE)

ggplot(data=data, aes(x=dates, y=pib))+
geom_line(size=.8, colour='darkblue')+
labs(title='Crescimento Esperado para 2019',
subtitle='Boletim Focus: mediana das instituições',
caption='Fonte: analisemacro.com.br com dados do BCB.')+
xlab('')+ylab('% a.a.')+
scale_x_date(breaks = date_breaks("4 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
geom_label_repel(label=round(data$pib,2),
color = c(rep('black',1), rep(NA,nrow(data)-1)),
fill = c(rep('#91b8bd',1),
rep(NA,nrow(data)-1)))+
theme(panel.background = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.background = element_rect(fill='#8abbd0'),
axis.line = element_line(colour='black',
linetype = 'dashed'),
axis.line.x.bottom = element_line(colour='black'),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = 'bottom',
legend.background = element_rect((fill='#acc8d4')),
legend.key = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.margin=margin(5,5,15,5))+
annotation_custom(g,
xmin=as.Date('2019-01-03'),
xmax=as.Date('2019-01-31'),
ymin=1.5, ymax=2)

Abaixo, o gráfico...

Isso e muito mais você aprende em nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.