Modelo 3 Fatores de Fama French

Os modelos multifatores de precificação de ativos, muito conhecidos na finanças, utilizam fatores de risco para calcular o retorno de um ativo. Modelos mais simples tais como o Modelo de Mercado, ou mesmo o mais conhecido no mundo das finanças, o Capital Asset Pricing Model, utilizam o conhecido Beta, fator de risco do mercado, para precificação. No post de hoje, iremos estender o CAPM e fazer um exercício de um modelo também conceituado, que utiliza mais de um fator para a precificação, o modelo Fama French de 3 fatores.

Como uma extensão do CAPM, o modelo Fama French relaciona o excesso de retorno (diferença do retorno do ativo com o retorno livre de risco) em relação ao prêmio pelo risco do mercado, além também de dois outro fatores: HML (High minus Low), sendo a diferença entre os retornos das firmas que tenham um alto book-to-market e baixo book-to-market; e SMB (Small minus Big Factor), sendo a diferença entre empresas grandes e pequenas.

     $$r_i - r_f = \alpha_i + \beta_iM(r_m - r_f) + \beta_iHML \ r_HML + \beta_iSMB \ r_SMB + e_i$$

A sensitividade de cada fator é medido pelos $\beta$ da equação, sendo possível mensurar os riscos que uma carteira de ativos sofrem, bem como traçar estratégias com as informações da influência de cada fator de risco.

Agora, vamos realizar um exemplo dentro do R. O site https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html facilita o trabalho realizando cálculos dos fatores de risco para diversos países. Como exemplo, utilizaremos ações e os fatores do EUA para demonstrar o cálculo do modelo Fama French. Para o Brasil, o NEFIN-USP realiza os cálculos para os fatores.

# Carrega os pacotes
library(tidyverse)
library(quantmod)
library(permutations)
library(lubridate)
library(tidyquant)
library(broom)
# Importa os dados baixados

factors <- read_csv("F-F_Research_Data_Factors.csv", skip=3) %>%
rename(date = ...1) %>%
mutate_at(vars(-date), as.numeric) %>%
mutate(date = ymd(parse_date_time(date, '%Y%m')),
date = rollback(date + months(1))) %>%
drop_na()
# Coleta os preços

symbols <- c("SPY","EFA", "IJS", "EEM","AGG")

prices <- tq_get(symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2019-01-01")

# Transforma em retornos

asset_returns <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
indexAt = "lastof",
type = "log")
# Calcula o retorno do portfólio

portfolio_return <- asset_returns %>%
tq_portfolio(assets_col = symbol,
returns_col = monthly.returns,
col_rename = "returns",
rebalance_on = "quarters")
# Junta os data frame

ff_portfolio <- portfolio_return %>%
left_join(factors, by = "date") %>%
mutate(mkt_rf = `Mkt-RF`/100,
smb = SMB/100,
hml = HML/100,
rf = RF/100,
r_excess = round(returns - rf, 4)) %>%
select(- rf)
# Cria o modelo

ff_model <- ff_portfolio %>%
lm(r_excess ~ mkt_rf + smb + hml, data = .) %>%
augment() %>%
mutate(date = ff_portfolio$date,
returns = ff_portfolio$returns)


# Plota

ff_model %>%
ggplot(aes(x = date))+
geom_line(aes(y = .fitted,
color = "Retornos"))+
geom_line(aes(y = returns,
color = "Retornos FF"))+
labs(title = "Comparação - Retornos calculado pelo Modelo de 3 Fatores Fama French x Retornos reais",
x = "",
y = "",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance")+
theme_minimal()+
theme(legend.title = element_blank())

 

________________________

(*) Para entender mais sobre finanças e modelagem, confira nosso curso de R para o Mercado Financeiro.
________________________

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.