Tag

câmbio Archives - Análise Macro

Previsão da taxa de câmbio (R$/US$): é possível superar o Random Walk?

By | Comentário de Conjuntura

A taxa de câmbio é uma das variáveis mais difíceis de se gerar previsão quantitativa para alguns períodos à frente. Isso porque, são muitas as variáveis domésticas e externas que a influenciam. Não por outro motivo, há uma piada bastante conhecida entre os economistas de que Deus haveria de ter criado o câmbio para humilhá-los. Feita a ressalva, nesse Comentário de Conjuntura apresentamos um modelo de previsão para a taxa de câmbio, que replica o trabalho The unbeatable random walk in exchange rate forecasting: Reality or myth?proposto por Moosa, I. e K. Burns.

A aula completa e a replicação do modelo, de autoria do nosso Cientista de Dados Fernanda da Silva, estão disponíveis no nosso Curso de Modelos Preditivos aplicados à Macroeconomia.

A especificação do modelo estático é dada abaixo:

(1)   \begin{equation*} s_t = \alpha_0 + \alpha_1(m_{a,t} - m_{b,t}) + \alpha_2(y_{a,t} - y_{b,t}) + \alpha_3(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde s é o log da taxa de câmbio nominal, m é o log da oferta de moeda, y é o log da produção industrial, i é o log(1 + x/100) da taxa de juros, a e b se referem aos países em análise, Brasil e USA, respectivamente.

Já a especificação do modelo dinâmico é dada por:

(2)   \begin{equation*} s_t = \mu_t + \phi_t + \alpha_{1t}(m_{a,t} - m_{b,t}) + \alpha_{2t}(y_{a,t} - y_{b,t}) + \alpha_{3t}(i_{a,t} - i_{b,t}) + \varepsilon_t \end{equation*}

Onde \mu e \phi são as variáveis não observáveis - componentes extraídos de s_t - tendência e ciclo da variável dependente, respectivamente.

Os modelos são, então, comparados com o benchmark tradicional da literatura representado por um modelo Random Walk, além de outras especificações simples e previsões de agentes de mercado registradas no sistema de expectativas Focus/BCB.

Os dados utilizados são:

workflow proposto:

1. Obtenção das séries temporais nas bases de dados;
2. Tratamento prévio de dados;
3. Visualização dos dados;
4. Verificar estacionariedade (ADF, PP e KPSS) e aplicar diferenças necessárias, além de transformação logarítmica;
5. Estimação e previsão recursiva do modelo OLS estático e RW, considerando sequência crescente da amostra de dados (amostra inicial com 60 observações);
6. Benchmark com modelo OLS dinâmico (TVP) e expectativas do Focus<sup>1</sup>;
7. Escolha de modelo final e previsão fora da amostra.

O modelo para comparação da capacidade preditiva usado é um OLS TVP. Adicionalmente, comparamos as previsões dos modelos baseline e alternativo com as previsões dos agentes de mercado, reportadas no sistema de expectativas Focus/BCB.

O modelo OLS TVP demonstrou melhor performece, sendo estatisticamente mais acurado em relação a um modelo Random Walk, além de superar o benchmark de mercado (Focus).

_______________

A aula completa com o passo a passo de como replicar o modelo está disponível no Curso de Modelos Preditivos aplicados à Macroeconomia. Os códigos estão disponíveis no Clube AM.

Projeções macroeconômicas para 2022

By | Dados Macroeconômicos, Indicadores

2022 será mais um ano novo com velhos desafios. A combinação de inflação acima da meta, atividade econômica em recessão técnica, alto desemprego e contas públicas deterioradas é ao mesmo tempo passado e futuro da economia brasileira. A perspectiva não é animadora, confira nossos números dos principais indicadores macroeconômicos abaixo.

Com a inflação corrente em patamar elevado e acima da meta, além da surpresa do IPCA em outubro, nossa projeção de inflação para 2021 é de 9,82%, convergindo para dentro do intervalo da meta somente após o segundo semestre de 2022 e encerrando em 3,74%.

O custo de trazer a inflação para meta será enorme e o Banco Central deve continuar fazendo sucessivos aumentos da taxa de juros durante o primeiro semestre de 2022, com SELIC terminal projetada em 10,75% a.a. e risco de alta.

O impacto da contração monetária será significativo, mas ainda assim o PIB deve apresentar - com otimismo - crescimento de 1,83% em 2022. O valor é abaixo da média histórica (2,20%) da série, mensurada a partir de 2000. Na variação marginal, a economia deve sair do terreno negativo somente a partir do segundo trimestre de próximo ano.

Por fim, a moeda brasileira deve seguir se desvalorizando significativamente, encerrando o ano de 2022 com a taxa de câmbio nominal cotada acima dos (R$/US$) 7,00.

_________________

Saiba mais sobre modelos de previsão nos cursos de Macroeconomia Aplicada utilizando o R da Análise Macro.

Um modelo econométrico para a taxa de câmbio

By | Comentário de Conjuntura

Uma piada bastante conhecida nas faculdades de economia é que Deus teria inventado o câmbio para humilhar os economistas. De fato, dada a enorme quantidade de fatores que o influenciam, é bastante desafiador tentar realizar alguma previsão decente dessa variável. Mas há algumas pistas, como exploramos nessa edição do Comentário de Conjuntura.

Os códigos dos nossos Comentários de Conjuntura são disponibilizados para os Membros do Clube AM. Conheça o Clube AM aqui.

Um modelo econométrico bastante utilizado para entender a trajetória da taxa de câmbio no Brasil foi proposto pelo Banco Central nos idos de 2001. O modelo era o seguinte:

(1)   \begin{equation*} \Delta e_t = \gamma_1 \Delta e_{t-1} - \alpha_1 \Delta (selic_t - FFunds_t) + \beta_1 \Delta Risco_t + (1 - \gamma_1) (\pi_t - \pi_t^{f}) + \varepsilon_t \end{equation*}

onde:

e_t é a taxa de câmbio;

selic_t é a taxa básica de juros do Br;

FFunds_t é a taxa básica de juros do US;

Risco_t é uma medida de risco;

\pi_t é a inflação do Br;

\pi_t^{f} é a inflação do US.

Sobre a equação acima, por suposto, aplicamos a restrição de que \Delta e_t = (\pi_t - \pi_t^{f}), isto é, a variação do câmbio nominal, no equilíbrio, deve ser igual ao diferencial de inflação.

Nos últimos anos, a propósito, a previsão do câmbio tem sido ainda mais desafiador porque justamente uma das  principais variáveis que interferem na sua trajetória é o ambiente político-econômico do país, que tem como proxy no modelo acima a medida de risco.

Para estimar esse modelo, nós baixamos os dados com o R do Banco Central, do FRED St Louis e do IpeaData. A coleta dos dados é seguida do seu tratamento, de modo a adequar os mesmos à estimação do modelo proposto acima. As variáveis ficam então apresentadas como no gráfico abaixo.

É esperado que o prêmio de risco tenha efeito positivo sobre o diferencial do câmbio, i.e., que cause desvalorizações cambiais enquanto o diferencial de juros exerceria pressão contrária. A tabela abaixo resume a estimação do modelo, com a imposição de restrição que fizemos.

Modelo com restrição
Estimate Std. Error t value Pr(> | t| )
dlcambio_l1 0.560 0.063 8.818 0
ddif_juros -0.566 0.311 -1.819 0.072
dlrisco 0.198 0.025 7.881 0
dif_inflacao 0.440 0.063 6.938 0

Os coeficientes estimados possuem os sinais esperados e apresentam significância estatística, com a imposição de restrição. O diferencial de juros aprecia a taxa de câmbio, enquanto o prêmio de risco tem efeito depreciativo.

Uma vez estimado o modelo e entendido a relação empírica entre as variáveis, o que podemos dizer sobre o período atual?

Por um lado, temos tido um aumento do risco-país, dada a deterioração do ambiente político-fiscal dos últimos meses. É esperado, inclusive, que essa deterioração continue no próximo ano, principalmente por causa das eleições.

Por outro lado, o aumento da taxa básica de juros, a Selic, em reação ao processo inflacionário descontrolado, tem tido influência sobre o diferencial de juros, o que em tese atrairia investimento em carteira para o Brasil e atenuaria essa pressão por desvalorização. Essas forças antagônicas dão o tom da trajetória do câmbio no curto prazo, gerando uma volatilidade bastante intensa.

Por óbvio, o modelo é simplificado ao ponto de não incluir outros atores importantes, em particular, a autoridade monetária, que pode (e deve?) intervir no mercado de modo a tentar suavizar esse aumento de volatilidade no curto prazo.

_______________________

(*) Para maiores detalhes sobre o uso desse tipo de modelo para fins de previsão, conheça nossos Cursos de Previsão Macroeconométrica e Modelos Preditivos aplicados à Macroeconomia.

Focus é um bom preditor da trajetória econômica?

By | Economia, Indicadores

As expectativas dos agentes de mercado do sistema Focus/BCB são amplamente conhecidas e acompanhadas semanalmente, fornecendo um importante resumo estatístico do que se espera para o futuro da economia brasileira. Obviamente prever o futuro não é uma tarefa fácil ou trivial, de forma que essas projeções de mercado inerentemente carregam consigo um grau de incerteza, o que se costuma chamar como “termo de erro” no economês.

Dessa forma, especialmente para uma economia exótica como a brasileira, a incerteza associada às projeções macroeconômicas ganha uma especial importância. Uma forma interessante e prática de começar a entender o assunto pode ser uma simples comparação entre o que se projetava para uma variável macroeconômica versus o que foi de fato observado para a mesma ao longo do tempo.

O gráfico abaixo procura fazer isso, a linha vermelha representa a taxa de crescimento do PIB divulgado pelo IBGE trimestralmente e as linhas azuis são as expectativas diárias dos agentes de mercado para a trajetória futura dessa mesma variável, reportadas no sistema Focus/BCB:

Percebe-se que os economistas e colegas de profissão são, em geral, bastante otimistas em relação ao desempenho da economia, mas costumam ser frequentemente contrariados pelos dados fora de seus modelos. É importante frisar que as projeções costumam ser feitas com base em cenários para economia, de forma que a incerteza constante do dia a dia do brasileiro – sejam turbulências fiscais, políticas ou mesmo externas – dificulta uma previsão perfeita (perfect foresight), como observado no gráfico.

Para algumas das demais variáveis que compõem o Top 5 Focus, ranking das instituições com base em um índice de acerto, podemos observar comportamento semelhante.  A exceção é o caso da inflação, onde os desvios do projetado vs. observado medido pelo IPCA são bem menos evidentes.

Neste caso podemos dizer que as expectativas de inflação são racionais? Para essa discussão recomendo este post recente do economista Felipe Camargo, que aborda bem esta questão.

As trajetórias esperadas para variáveis referentes a taxa de câmbio e juros quando comparadas com os valores observados são igualmente interessantes:

 

Por fim, deixo a conclusão do questionamento levantado neste texto para o leitor, com a esperança de que as visualizações tenham sido informativas, apesar de não serem tão prazerosas à vista de quem está envolvido no processo de previsão dessas variáveis.

 

 

________________________

Obtenha dados do sistema de expectativas Focus/BCB com o pacote meedr no R: https://github.com/schoulten/meedr

Aprenda sobre modelos preditivos aplicados a macroeconomia na Análise Macro.

Faça parte do Clube AM para ter acesso aos códigos de R.

Momento atual atinge novo patamar de preocupação

By | Indicadores

A crise provocada pelo avanço do coronavírus pelo mundo e pela queda de braço dentro da Opep atingiu um novo patamar de preocupação. A sequência inédita de circuit breakers nas bolsas internacionais (que continuam nessa segunda-feira) é um forte indicador do momento crítico que estamos vivendo. Com efeito, vamos dar uma olhada em alguns desses indicadores com o R. A seguir carregamos alguns pacotes.


library(quantmod)
library(BatchGetSymbols)
library(ggplot2)
library(scales)
library(forecast)
library(xts)
library(gridExtra)
library(tidyverse)

Baixamos a seguir o índice Bovespa, a taxa de câmbio e o índice VIX.


getSymbols("BRL=X",src="yahoo")
getSymbols("^BVSP",src="yahoo")
getSymbols('VIXCLS', src='FRED')

Colocamos um gráfico das três séries logo abaixo.

O momento tenso também pode ser visto de um outro ponto de vista. Através da variação do índice bovespa. Colocamos um gráfico abaixo.

Não há precedentes sobre o que está ocorrendo no mundo. Nem mesmo a crise de 2008 gerou uma sequência de quedas tão fortes como o que estamos vendo aqui. Não por outro motivo, o Federal Reserve alterou ontem a meta para a taxa básica de juros, colocando-a entre 0% e 0,25%, além de anunciar um pacote gigantesco de apoio ao sistema financeiro. Abaixo, colocamos um gráfico com o avanço do coronavírus em países selecionados (Brasil, incluído).

Com dados atualizados até 15/03, segundo o CSSE da Johns Hopkins, o total de casos confirmados atinge 167,4 mil. Para além disso, como é possível ver na curva acima, o crescimento do número de casos segue em trajetória exponencial. Não por outro motivo, medidas de lockdown são tão necessárias, de modo a não sobrecarregar os sistemas de saúde. O gráfico a seguir ilustra o formato da curva de crescimento dos casos confirmados, tomando a média diária mundial.

Com todo esse contexto, não surpreende que as perspectivas para o boletim Focus tenham se deteriorado. O gráfico a seguir ilustra.

Ao longo da semana, vou mostrar como é possível usar o R para analisar a montanha de dados que temos à disposição sobre a crise. De casa, em quarentena! 🙂

(*) Isso e muito mais você aprende em nossos Cursos Aplicados de R.

___________


Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente