Tag

crédito livre Archives - Análise Macro

Crédito Livre vs. Crédito Direcionado no Brasil

By | Crédito

O crédito direcionado, aquele que é administrado por bancos públicos e possui subsídios importantes envolvidos na sua intermediação, ainda é bastante relevante no mercado de crédito brasileiro. Para ilustrar, como ensinamos em nosso Curso de Análise de Conjuntura usando o R, vamos coletar os dados referentes a crédito diretamente do Banco Central com o R.

Para isso, nós utilizamos o pacote rbcb, como abaixo.


library(rbcb)
library(tidyverse)
library(zoo)
library(scales)

series = list('livres'= 20542,
'direcionado' = 20593)

data = get_series(series) %>%
reduce(inner_join) %>%
mutate(total = livres + direcionado,
'Crédito Livre' = livres/total*100,
'Crédito Direcionado' = direcionado/total*100) %>%
select(date, 'Crédito Livre', 'Crédito Direcionado') %>%
gather(variavel, valor, -date)

No código acima, nós estamos basicamente pegando os dados do crédito livre, aquele que é intermediado sem subsídios e o crédito direcionado que falamos acima. A partir das séries coletadas, nós podemos criar as taxas de crédito livre e de crédito direcionado a partir do estoque total de crédito. Com efeito, podemos gerar o gráfico abaixo.

A despeito da mudança na estrutura da taxa de juros que regula os empréstimos do BNDES, parte importante do estoque de crédito direcionado, o mesmo ainda responde por mais de 40% do total de crédito no Brasil.

__________________

Análise do Mercado de Crédito com o R

By | Comentário de Conjuntura

A disponibilidade de crédito é uma variável de suma importância para impulsionar tanto o consumo das famílias quanto o investimento das firmas. Nesse Comentário de Conjuntura, por suposto, seguindo a análise do mercado de crédito que faço no Curso de Análise de Conjuntura usando o R, vamos dar uma olhada em alguns aspectos desse mercado. Para isso, vou utilizar aqui o pacote Quandl para pegar as séries do Banco Central diretamente para o R.

Para começar, vamos pegar as concessões mensais de crédito.


library(Quandl)
library(ggplot2)
library(scales)

credito_total = Quandl('BCB/20631', order='asc')

Na sequência, podemos pegar os dados divididos por pessoa física e jurídica.

</span>

library(tidyverse)

credito_pj = Quandl('BCB/20632', order='asc')
credito_pf = Quandl('BCB/20633', order='asc')

credito_por_p = inner_join(credito_pj, credito_pf, by = 'Date') %>%
rename(pj = Value.x, pf = Value.y)
<pre>

Na sequência, pegamos os dados divididos por crédito livre crédito direcionado.

</pre>
credito_livre = Quandl('BCB/20634', order='asc')
credito_direc = Quandl('BCB/20685', order='asc')

credito_por_recurso = inner_join(credito_livre,
credito_direc, by = 'Date') %>%
mutate(livre=Value.x, direc=Value.y, .keep='unused')
<pre>

A seguir, fazemos a divisão desse estoque entre crédito público e privado.


## Crédito Público vs. Privado
privado <- Quandl('BCB/2043', start_date = '2000-01-01', order='asc')
publico <- Quandl('BCB/2007', start_date = '2000-01-01', order='asc')

data <- inner_join(privado, publico, by='Date')%>%
mutate(privado=Value.x/(Value.x+Value.y)*100,
publico=Value.y/(Value.y+Value.x)*100,
.keep='unused') %>%
pivot_longer(names_to='variavel', values_to='valor', cols=-Date)

 

Uma recuperação mais pujante do mercado de crédito é crucial para que possamos acelerar o crescimento da economia brasileira. Para isso, contudo, são fundamentais as reformas microeconômicas que estão no radar tanto do Congresso Nacional quanto do próprio Banco Central.

_______________________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Análise do Mercado de Crédito com o R

By | Comentário de Conjuntura

A disponibilidade de crédito é uma variável de suma importância para impulsionar tanto o consumo das famílias quanto o investimento das firmas. Nesse Comentário de Conjuntura, por suposto, seguindo a análise do mercado de crédito que faço no Curso de Análise de Conjuntura usando o R, vamos dar uma olhada em alguns aspectos desse mercado. Para isso, vou utilizar aqui o pacote Quandl para pegar as séries do Banco Central diretamente para o R.


library(Quandl)
library(ggplot2)
library(scales)
Quandl.api_key('a sua chave aqui') # Permite mais de 50 acessos dia
credito_total = Quandl('BCB/20631', order='asc')

credito_pj = Quandl('BCB/20632', order='asc')
credito_pf = Quandl('BCB/20633', order='asc')

credito_livre = Quandl('BCB/20634', order='asc')
credito_direc = Quandl('BCB/20685', order='asc')


Os dados importados sofrem de sazonalidade, de modo que é preciso fazer o ajuste da série. Também é preciso deflacionar as séries, de modo a tornar a análise dos dados correta. Isso é feito com o código a seguir.


### Importar IPCA
library(sidrar)
ipca = get_sidra(api='/t/1737/n1/all/v/2266/p/all/d/v2266%2013')
ipca = ts(ipca$Valor, start=c(1979,12), freq=12)
ipca = window(ipca, start=c(2011,03))

### Pacote Seasonal
library(seasonal)
Sys.setenv(X13_PATH = "C:/Séries Temporais/R/Pacotes/seas/x13ashtml")
concessoes = ts(data.frame(credito_total$Value, credito_pj$Value,
credito_pf$Value, credito_livre$Value,
credito_direc$Value), start=c(2011,03), freq=12)
### Deflacionar Séries
concessoes <- ipca[length(ipca)-1]*(concessoes/ipca)

colnames(concessoes) = c('Total', 'juridica',
'fisica', 'livre', 'direcionado')
matrix <- matrix(NA, nrow = nrow(concessoes), ncol=ncol(concessoes))
colnames(matrix) <- colnames(concessoes)

for(i in 1:ncol(concessoes)){

matrix[,i] <- final(seas(concessoes[,i]))
}

concessoes_sa = data.frame(time=credito_total$Date, matrix)

Uma vez que os dados estejam tratados, podemos visualizá-los. Abaixo, vemos as concessões mensais totais.

Como se vê, há um avanço nas concessões mensais de crédito na margem. Podemos tentar entender melhor esse avanço com a abertura por pessoa física e jurídica. O gráfico abaixo ilustra.

Tanto as concessões mensais à pessoa física quanto jurídica mostram avanço nos últimos anos. Também podemos verificar o crédito quanto a diferenciação entre crédito livre e direcionado. O gráfico abaixo ilustra.

Observa-se uma diferença importante entre as categorias. Enquanto o crédito livre mostra avanço, o crédito direcionado tem se mantido estável nos últimos anos. A seguir, vemos o estoque de crédito normalizado pelo PIB.


library(tidyverse)
estoque_cred = Quandl('BCB/20539', order='asc',
start_date='1999-01-31')
pib = Quandl('BCB/4382', order='asc', start_date='1999-01-31')
estoque_cred = mutate(estoque_cred,
razao=estoque_cred$Value/pib$Value*100)
ggplot(estoque_cred, aes(Date, razao))+
geom_area(stat='identity', fill='darkblue', colour='darkblue')+
scale_y_discrete(limits=c(10,20,30,40,50))+
scale_x_date(breaks = date_breaks("1 years"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=15))+
labs(x='', y='% PIB', title='Estoque de Crédito (% PIB)',
caption='Fonte: analisemacro.com.br')

Na ponta, há um leve avanço no estoque normalizado pelo PIB, refletindo o aumento das concessões mensais. A seguir, fazemos a divisão desse estoque entre crédito público e privado.

De fato, o estoque de crédito associado à instituições privados tem recuperado espaço em relação às instituições estatais. A seguir, olhamos para a taxa média de juros associada às operações de crédito.

As taxas médias na ponta ainda permanecem acima de 20% a.a., refletindo o que os economistas chamam de spread bancário, a diferença entre taxas de captação e aquelas cobradas dos que demandam crédito. O gráfico abaixo ilustra essas taxas de spread.

Como se vê, o spread permanece ainda elevado. A seguir, ilustramos o comportamento da inadimplência.

Por fim, vemos o comportamento do endividamento das famílias em relação à renda acumulada nos últimos 12 meses.

Uma recuperação mais pujante do mercado de crédito é crucial para que possamos acelerar o crescimento da economia brasileira. Para isso, contudo, são fundamentais as reformas microeconômicas que estão no radar tanto do Congresso Nacional quanto do próprio Banco Central.

_____________________________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Crédito Livre vs. Crédito Direcionado

By | Crédito

O tema juro alto no Brasil volta em meia aparece na imprensa. Em tempo de eleições gerais no país, o tema tem sido recorrentemente abordado por jornalistas, candidatos e economistas. Como já disse em diversas oportunidades nesse espaço, existem três razões principais para que o juro de equilíbrio da economia brasileira seja elevado: o fiscal ruim, a poupança baixa e o crédito direcionado. Sobre esse último, a despeito de existirem diversos trabalhos mostrando sua relevância para explicar o juro mais alto no país, ainda há muito desconhecimento sobre a questão. Mesmo entre pessoas que deveriam entender sobre o assunto, como economistas e professores de economia. Nesse post, como no nosso Curso de Análise de Conjuntura usando o R, mostro como é possível verificar a expansão do crédito direcionado nos últimos anos no país.

A ideia é razoavelmente simples. Enquanto o crédito direcionado possui taxas de juros subsidiadas para alguns setores da economia, o crédito privado vai ter taxas de juros mais elevadas para todos os demais setores. Afinal, o Banco Central precisará aumentar mais os juros básicos para atingir o chamado crédito livre, que não atende a direcionamentos do setor público, para conter a demanda em tempos de contração monetária. Tudo, diga-se, previsto pela teoria da política monetária. Abaixo, ilustramos que a coisa só se agravou nos últimos anos, com o crédito direcionado saindo de 35% no início de 2007 para mais de 47% no último dado disponível, que é junho desse ano.

O gráfico é, a propósito, gerado no R (aprenda a usar R nos nossos Cursos Aplicados) com dados coletados diretamente do site do Banco Central com o pacote BETS. Ela dá uma dimensão sobre a presença do crédito direcionado na economia, ocupando hoje quase a metade de todo o crédito disponível no país. Somado ao elevado endividamento do setor público e a baixa poupança, o crédito direcionado nessas proporções explica por que temos um juro de equilíbrio tão alto, se comparado a países com mesmo nível de renda.

Atacar o problema, por suposto, implica em desmontar todo o sistema que está por trás desse número, composto basicamente por bancos públicos como BNDES, Banco do Brasil e Caixa Econômica Federal. É uma tarefa díficil, que vai contra diversos interesses, principalmente daqueles que se beneficiem desse tipo de crédito direcionado. Mas, se o objetivo é ter um juro de equilíbrio mais baixo, é por aí que se deve caminhar...

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente