Tag

dados do sidra Archives - Análise Macro

Análise da Produção Industrial no Python

By | Indicadores

A Pesquisa Mensal da Indústria (PIM-PF) é um dos principais indicadores de acompanhamento do produto real das indústrias extrativa e de transformação, e é extremamente útil para entender o comportamento conjuntural da economia do país. No post de hoje, mostramos como é possível utilizar o Python para criar uma breve análise do indicador.

Através da PIM-PF é possível averiguar o volume de bens produzidos pelo setor industrial do país. Ao construir cálculos de variações do volume, é possível entender a conjuntura do país.

O indicador pode ser buscado através do Sidra, repositório de acesso de dados das pesquisas realizados pelo IBGE. É extremamente fácil de realizar a importação de dados do Sidra através do Python, no qual ensinamos todos os passos através do Clube AM, onde disponibilizamos o código e o vídeo comentado. Também ensinamos toda a teoria e prática da Análise da PIM-PF no curso Análise de Conjuntura usando o R.

Abaixo, temos o gráfico da variação acumulada em 12 meses do indicador desde 2002.

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Faça parte também do nosso grupo especial de compartilhamento de códigos Clube AM

O Banco Central e a espada de Dâmocles

By | Comentário de Conjuntura

O Banco Central termina hoje mais uma reunião do Comitê de Política Monetária (COPOM), cujo objetivo é decidir sobre a trajetória da taxa básica de juros, a SELIC. O que mais importa na reunião, contudo, não é saber quanto de fato será a mudança na Selic, já que há um grande consenso em torno de 75 pontos-base, graças à comunicação do próprio Banco Central. Importa saber se o Comitê irá levar os juros para além da neutralidade, isto é, se de fato promoverá um ajuste total no juros, a ponto de tornar a política monetária contracionista. Nesse Comentário de Conjuntura, fazemos uma análise descritiva desse ponto.

(*) Aprenda a fazer esse tipo de análise através dos nossos Cursos Aplicados de R.

O cenário atual é basicamente composto por um nível de atividade em recuperação, inflação em aceleração e política monetária em situação expansionista. Esse último ponto, diga-se, pode ser ilustrado pela comparação entre a taxa de juros real ex-ante e o juro de equilíbrio da economia. A figura abaixo ilustra.

Abaixo, vemos a variação marginal das três pesquisas mensais principais de nível de atividade.

E a seguir, um resumo das métricas de crescimento, incluindo o IBC-Br.

Os resultados positivos na margem (à exceção da indústria) dessas pesquisas, somados aos resultados do PIB no 1º trimestre garantiram uma revisão das projeções para o nível de atividade em 2021. Isto é, espera-se que haja um crescimento mais robusto esse ano do que o inicialmente projetado.

Em paralelo a esse processo de recuperação do nível de atividade, temos uma inflação em aceleração, fruto de inúmeros choques que têm ocorrido sobre a economia brasileira nos últimos meses.

O gráfico acima ilustra. A inflação cheia chegou a 8,06% no acumulado em 12 meses até maio. Não apenas isso, a média dos 7 núcleos de inflação também está em aceleração.

Diante desse quadro, não nos parece razoável que o Banco Central continue com o discurso de normalização parcial da política monetária. Infelizmente, ele será obrigado a levar a taxa de juros real ao nível de neutralidade, de modo a conter o avanço das expectativas de inflação.

Por óbvio, não é uma situação confortável, já que o desemprego ainda permanece em nível elevado e ainda estamos com hiato do produto negativo. A espada de Dâmocles parece pesar sob a cabeça dos diretores da autoridade monetária.

____________________

(*) Para quem quiser ter acesso a todos os códigos desse e de todos os exercícios que publicamos ao longo da semana, visite o Clube AM.

(**) Os dados de nível de atividade e de inflação fazem parte dos nossos Monitores, que são ensinados no Curso de Análise de Conjuntura usando o R.

Análise do IPCA com o R

By | Inflação

O Índice de Preços ao Consumidor Amplo (IPCA) se consolidou como o principal índice de preços do país. Ele é utilizado, inclusive, como referência para o regime de metas para inflação administrado pelo Banco Central. O IPCA faz parte do Sistema Nacional de Índices de Preços ao Consumidor (SNIPC), sendo divulgado mensalmente pelo IBGE. A análise completa do índice faz parte do nosso Curso de Análise de Conjuntura usando o R.

O IPCA tem por objetivo medir a inflação de um conjunto de produtos e serviços comercializados no varejo, referentes ao consumo pessoal das famílias. Ele é construído de forma hierarquizada, sendo dividido em grupos, subgrupos, itens e subitens. Desde agosto de 1999, são nove os grupos: alimentos e bebidas, habitação, artigos de residência, vestuário, transportes, comunicação, saúde e cuidados pessoais, despesas pessoais e educação.

Para ilustrar a contribuição desses grupos para a inflação mensal, vamos coletar os dados da variação deles e o peso de cada grupo no índice diretamente do SIDRA/IBGE com o pacote sidrar.

O script começa, como de praxe, com os pacotes que utilizo.


library(tidyverse)
library(sidrar)

Na sequência, pegamos a variação e o peso dos nove grupos.


variacao =
'/t/7060/n1/all/v/63/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

peso =
'/t/7060/n1/all/v/66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v66%204' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

A contribuição de cada grupo para a inflação mensal será dada pela multiplicação do peso pela variação, como abaixo.


contribuicao = (variacao[,-1]*peso[,-1]/100) %>%
mutate(date = variacao$date) %>%
select(date, everything())

De posse dos dados da contribuição, podemos construir o gráfico abaixo.

A partir desse gráfico, é possível ver que a inflação mensal tem se acelerado (a linha branca) e que a principal contribuição para isso vem do grupo Alimentação e bebidas (a parte verde).

_______________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Análise da Taxa de Poupança com o R

By | PIB

Uma das questões postas na atual difícil conjuntura que vivemos é o aumento da taxa de poupança. Alguns jornalistas e mesmo analistas de mercado têm apontado para um aumento da poupança em resposta às dificuldades impostas pela pandemia. Dadas as suas repercussões sobre o consumo e, consequentemente, sobre a recuperação do nível de atividade, foi até mesmo um ponto relevante no último Relatório de Inflação divulgado pelo Banco Central.

Para nivelar o terreno, alguma informação inicial. Para fazer uma análise da poupança, precisaremos recorrer à taxa de poupança trimestral e à taxa de poupança acumulada em quatro trimestres, de modo a dar alguma perspectiva de tendência sobre os números.

Sempre lembrando que a taxa de poupança é dada pela Poupança Bruta sobre o Produto Interno Bruto - viu como as aulas de Contabilidade Social são importantes?

Feita a ressalva, vamos aos dados. Os dados de poupança encontram-se no SIDRA/IBGE, na parte de Contas Nacionais Trimestrais, especificamente nas Contas Econômicas Integradas (CEI). Caso não lembre bem disso, considere fazer nosso Curso de Macroeconomia com Laboratórios de R. O pedaço de código abaixo é o início do script que usei para fazer esse exercício. Ele carrega alguns pacotes e baixa os dados da poupança trimestral para o R.


####################################################
##### Análise da Poupança nas Contas Nacionais #####

library(sidrar)
library(tidyverse)
library(RcppRoll)
library(scales)
library(zoo)
library(seasonal)
library(tsibble)
library(feasts)

### Coletar dados individuais do SIDRA/IBGE ###

poupanca = get_sidra(api='/t/6726/n1/all/v/all/p/all/d/v9774%201') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
rename(tx_poupanca_tri = Valor) %>%
select(date, tx_poupanca_tri)

De posse da poupança trimestral, vamos avançar e calcular a poupança acumulada em quatro trimestres. Para isso, precisaremos da poupança bruta e do produto interno bruto. O código abaixo pega os dados das Contas Econômicas Integradas, disponíveis no SIDRA/IBGE e já executa os cálculos que precisamos.


#### Acumular dados em quatro trimestres ###

tabela_cei = get_sidra(api='/t/2072/n1/all/v/933,940/p/all') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
select(date, `Variável`, 'Valor') %>%
spread(`Variável`, 'Valor') %>%
mutate(pib_4t = roll_sum(`Produto Interno Bruto`,4,
fill=NA, align='right'),
pb_4t = roll_sum(`(=) Poupança bruta`,4,
fill=NA, align='right')) %>%
mutate(tx_poupanca = pb_4t/pib_4t*100) %>%
as_tibble()

Temos agora tanto a taxa trimestral quanto a taxa acumulada em quatro trimestres. Mas há mais uma coisa a fazer. Se você reparar bem, vai ver que existe um efeito sazonal na taxa de poupança. O código a seguir junta os dois tibbles acima e dessazonaliza os dados.


data = inner_join(tabela_cei, poupanca, by='date') %>%
mutate(poupanca_sa = final(seas(ts(tx_poupanca_tri,
start=c(2000,01),
freq=4))))

O gráfico abaixo ilustra o comportamento das três séries.

De fato, a poupança acumulada em 4 trimestres e a poupança dessazonalizada estão crescendo desde o ano passado. Com um crescimento pronunciado entre o quarto trimestre de 2019 e o segundo de 2020. A seguir, deixamos claro a sazonalidade da poupança, que costuma cair no último trimestre do ano.

De posse dos dados, fica a cargo do leitor criar a melhor narrativa...

_____________

(*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

 

Levando o PIB para o R com o pacote SidraR

By | PIB

Recentemente, publiquei no Blog da Análise Macro um post que fazia referência ao pacote SidraR, que visa facilitar a vida de quem trabalha com os dados do SIDRA/IBGE. O pacote permite baixar dados do SIDRA diretamente para o R. Alguns alunos dos Cursos de R da Análise Macro e mesmo membros do nosso Clube do Código me enviaram dúvidas nas últimas semanas sobre como manipular os dados obtidos a partir do pacote. Isso porque, como mostra a figura abaixo, os dados obtidos não formam um data frame tradicional, com as colunas sendo variáveis e as linhas observações. Com efeito, é preciso fazer um tratamento dos dados obtidos. É o que fazemos na edição 38 do Clube do Código, uma vez que os dados do SIDRA/IBGE são bastante importantes para profissionais de diferentes áreas. Nesse post, mostramos alguns pontos do exercício.

Com o código abaixo, nós importamos os componentes do PIB pelo lado da oferta e pelo lado da demanda, para os índices encadeados e para os ajustados sazonalmente.


## Importação dos dados do PIB
tabela = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90687,90691,90696,90707,93404,93405,93406,93407,93408/d/v583%202')
tabela_sa = get_sidra(api='/t/1621/n1/all/v/all/p/all/c11255/90687,90691,90696,90707,93404,93405,93406,93407,93408/d/v584%202')

Uma vez importados, os dados se parecerão com a figura acima. O código abaixo, então, faz a extração de cada uma das variáveis contidas no data frame, com base na coluna Setores e subsetores (Código), utilizando para isso um loop com a função for. Para que isso seja possível, claro, precisamos definir um vetor contendo os códigos das séries, além de precisarmos criar uma matriz que irá armazenar os dados extraídos. Ademais, criamos um vetor para nomear as séries obtidas.


series = c(90687,90691,90696,90707,93404,93405,93406,93407,93408)
names = c('Agro', 'Ind', 'Serv', 'PIB',
 'Consumo', 'Governo', 'FBCF',
 'Exportação', 'Importação')
pib = matrix(NA, ncol=length(series), 
 nrow=nrow(tabela)/length(series))
for(i in 1:length(series)){
 pib[,i] = tabela$Valor[tabela$
 `Setores e subsetores (Código)`
 ==series[i]] 
 pib = ts(pib, start=c(1996,01), freq=4)
 colnames(pib) = names
}

Ao rodar o código acima, teremos os dados organizados conforme a figura abaixo. Isto é, teremos as colunas representando os componentes do PIB (e uma delas, o próprio PIB) e as linhas representando as observações trimestrais - lembrando que também transformamos os nossos dados em séries temporais. Dessa forma, poderemos trabalhar com os nossos dados da forma que já estamos acostumados.

Os dados dos componentes do PIB e do próprio PIB em nível não dizem muita coisa para nós. Assim, é preciso criar algumas métricas de crescimento, isto é, a que taxa as nossas séries estão crescendo ou decrescendo. É o que fazemos no restante do exercício do Clube de modo a obter gráficos como os da figura abaixo.

E então, gostou do exercício? Você pode aprender mais fazendo um dos nossos Cursos Aplicados de R e se associando ao Clube do Código.

Vítor Wilher

Data Scientist

Vítor Wilher é Bacharel e Mestre em Economia, pela Universidade Federal Fluminense, tendo se especializado na construção de modelos macroeconométricos, política monetária e análise da conjuntura macroeconômica doméstica e internacional. Tem, ademais, especialização em Data Science pela Johns Hopkins University. Sua dissertação de mestrado foi na área de política monetária, titulada "Clareza da Comunicação do Banco Central e Expectativas de Inflação: evidências para o Brasil", defendida perante banca composta pelos professores Gustavo H. B. Franco (PUC-RJ), Gabriel Montes Caldas (UFF), Carlos Enrique Guanziroli (UFF) e Luciano Vereda Oliveira (UFF). Já trabalhou em grandes empresas, nas áreas de telecomunicações, energia elétrica, consultoria financeira e consultoria macroeconômica. É o criador da Análise Macro, startup especializada em treinamento e consultoria em linguagens de programação voltadas para data analysis, sócio da MacroLab Consultoria, empresa especializada em cenários e previsões e fundador do hoje extinto Grupo de Estudos sobre Conjuntura Econômica (GECE-UFF). É também Visiting Professor da Universidade Veiga de Almeida, onde dá aulas nos cursos de MBA da instituição, Conselheiro do Instituto Millenium e um dos grandes entusiastas do uso do no ensino. Leia os posts de Vítor Wilher aquiCaso queira, mande um e-mail para ele: vitorwilher@analisemacro.com.br

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente