knn

Neste exemplo mostramos o poder da IA, especificadamente o uso de modelos de Machine Learning de Séries Temporais, para prever os valores da Curva de Carga Horária de Energia Elétrica do Sudeste disponibilizada pela ONS. Para realizar as previsões, além dos modelos, empregamos métodos de machine learning já conhecidos, como cross-validation, usando a biblioteca MlForecast do Python.
Fazer investimentos sem analisar dados é como atirar no escuro. Ninguém quer estar numa posição errada na hora que uma nova crise estourar. Para mitigar estes riscos, modelos de probabilidade de recessão podem trazer informações relevantes para a tomada de decisão. Neste artigo mostramos uma aplicação destes modelos para a economia norte-americana, usando o ferramental de pacotes do Python.
Me mostre seus amigos e te direi quem és? Nesse artigo apresentamos a intuição e o funcionamento do algoritmo k-vizinhos próximos (k-NN) para problemas de classificação. Damos um exemplo com dados de classificação de economias em avançadas, emergentes ou baixa renda e usamos as linguagens R e Python.
O termo “Machine Learning” foi cunhado por Arthur Samuel em 1959 e definido como a capacidade que proporciona aos computadores a habilidade de aprender sem requerer programação explícita. Ao longo do tempo, essa área tem evoluído em paralelo com os avanços computacionais, consolidando-se como um elemento crucial na construção de modelos preditivos. Com a profusão de dados, particularmente os de natureza econômica, tornou-se possível a elaboração de modelos de previsão para variáveis macroeconômicas. Este artigo oferece uma introdução a esses tipos de modelos e apresenta um exemplo concreto: a construção de uma previsão para a probabilidade de recessão nos EUA, utilizando as linguagens R e Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.