Tag

regressão espúria Archives - Análise Macro

O andar do bêbado e seu cachorro: entendendo cointegração no R

By | Data Science

Muito utilizado no mercado financeiro para estratégias long-short, arbitragem estatística, pairs trading e em análise e previsão de séries temporais macroeconômicas, o conceito de cointegração é ao mesmo tempo fascinante e intimidador de se compreender. Por isso, neste breve texto iremos explicar o que é cointegração com um exemplo intuitivo e fazer um exercício aplicado com pares de ações brasileiras usando o R!

Esse texto faz parte de uma série de publicações sobre séries temporais e pode ser melhor aproveitado se você ler o texto anterior sobre regressões espúrias (link aqui).

A analogia do bêbado e seu cachorro

As definições matemáticas de cointegração, e tópicos relacionados, são um tanto quanto sofisticadas, mas o seu conceito é simples o suficiente para ser introduzido com a cômica analogia do andar do bêbado e seu cachorro. Os créditos da analogia são inteiramente de Michael P. Murray que escreveu, em 1994, um paper didático de apenas 3 páginas elucidando o conceito de cointegração com o conto do andar do bêbado.

Imagine que você esteja andando na rua da sua cidade e aviste um bêbado que acaba de sair do bar, vagando em direção a sua casa. Você percebe que o bêbado caminha de maneira peculiar e imprevisível, algumas vezes se desviando para a esquerda e outras para a direita enquanto tenta, com dificuldades, seguir o seu caminho. Ao observar a trajetória do bêbado pode-se dizer que seus passos são nada mais do que uma sequência aleatória de passos. Na econometria, chamamos a trajetória do bêbado de passeio aleatório (random walk), de maneira a descrever o comportamento de muitas das séries econômicas que existem.

Por andar de forma aleatória, se você desviar o olhar e parar de observar o bêbado andando, será difícil dizer onde o bêbado estará após um determinado tempo, pois sua trajetória é imprevisível. Uma das características das trajetórias do tipo passeio aleatório, como a do bêbado, é de que a melhor previsão sobre um valor futuro é o último valor observado. Dessa forma, o seu palpite sobre a localização atual do bêbado poderia ser algo como o último lugar onde você o avistou, ou seja, na saída do bar.

Agora imagine que o bêbado tenha um cachorro amigo, sem coleira, que o acompanha. De forma similar ao bêbado, o cachorro também segue uma sequência aleatória de passos, sendo atraído por cada cheiro novo e estímulos que sente no caminho. Sempre que o bêbado percebe que o cachorro foi muito longe ele o chama: "Thor!". E o cachorro obedece o chamado retornando para perto de seu dono, caracterizando assim uma correção da distância entre ambos.

Se fossemos representar por meio de um gráfico a trajetória do bêbado e do cachorro ao longo do tempo e em relação a um ponto de referência qualquer (como o bar), seria algo como:

Observando as trajetórias de ambos, pode-se dizer que mesmo que a localização atual do bêbado após um tempo seja imprevisível, a localização do cachorro é relativamente previsível, pois ele não se afastará muito do seu dono. Dessa forma, agora um bom palpite sobre a localização do bêbado, por exemplo, pode ser dado uma vez que você tenha encontrado o cachorro, e vice-versa, pois conforme seguem dando passos aleatórios também corrigem a distância entre ambos. Na econometria, chamamos isso formalmente de mecanismo de correção de erros.

Note, também, que ambas as trajetórias são o que chamamos de séries temporais não-estacionárias, dado que quanto mais tempo passa é mais provável que o bêbado e seu cachorro estejam vagando bem longe de onde foram vistos por último. Se for verdade que a distância entre eles seja corrigida por um mecanismo de correção de erros, então a distância entre as trajetórias é dita cointegrada de ordem zero.

Para entender o que a expressão cointegrada de ordem zero significa, vale primeiro entender o que são séries integradas. Séries temporais não-estacionárias que se tornam estacionárias quando diferenciadas1 n vezes são ditas integradas de ordem n ou, simplesmente, I(n). Para duas séries temporais serem cointegradas, cada série precisa ser integrada de mesma ordem, n; por isso o termo cointegração. Sendo assim, um conjunto de séries temporais, todas integradas de ordem n, são ditas cointegradas se e somente se alguma combinação linear das séries é integrada de ordem menor do que n. Tal combinação linear foi chamada de relação de cointegração, conforme o trabalho de Engle e Granger (1987).

Cointegração no sentido de Engle-Granger

De maneira um pouco mais formal, partindo de um modelo de passeio aleatório para as trajetórias do bêbado (xt) e do cachorro (yt), temos:

ut = xt - xt-1

wt = yt - yt-1

onde ut e wt representam, respectivamente, o passeio aleatório do bêbado e do cachorro ao longo do tempo t e são ruído branco estacionários. Podemos então modelar a "trajetória cointegrada" do bêbado e do cachorro como:

ut + c(yt-1 - xt-1) =  xt - xt-1

wt + d(xt-1 - yt-1) =  yt - yt-1

onde ut e wt são novamente os passeios aleatórios do bêbado e do cachorro e os termos adicionais no lado esquerdo das equações são os termos de correção de erro pelo quais o bêbado e o cachorro corrigem a distância um do outro, ou seja, permanecem próximos. Podemos então dizer que, das equações acima, (yt-1 - xt-1) é uma relação de cointegração entre a trajetória do bêbado e do cachorro. Dessa forma, se estabelece uma relação de equilíbrio de longo prazo entre as trajetórias.

Note que se os termos de correção de erros forem não-estacionários, então as trajetórias modeladas para o bêbado e o cachorro também seriam não-estacionárias, portanto ambos iriam provavelmente se distanciar bastante ao longo do tempo. Nesse caso, diríamos que as séries temporais das trajetórias do bêbado e do cachorro não são cointegradas de ordem zero. No entanto, Engle e Granger (1987) provaram que se a trajetória do bêbado e do cachorro são ambas integradas de ordem 1 e seguem o descrito nas equações acima, então as trajetórias cointegram.

A analogia do bêbado e seu cachorro é uma boa forma de entender os conceitos básicos de cointegração e do mecanismo de correção de erro, no entanto, há inúmeros detalhes técnicos que devem ser considerados em aplicações com dados reais. Para se aprofundar mais no tema considere o curso de Séries Temporais da Análise Macro.

O conceito de cointegração é bastante utilizado em exercícios de macroeconomia, mas também pode ser usado no mercado financeiro com o objetivo de identificar relações — como a do bêbado e seu cachorro — entre ativos e realizar operações lucrativas com a técnica. Um exemplo disso são as estratégias de pairs trading, onde se realiza operações com pares de ativos que apresentem relação de cointegração de modo a obter lucro com a arbitragem. O grande desafio dessa aplicação é encontrar o par de ativo que apresente essas características.

Teste de Cointegração de Engle-Granger

De maneira prática, para verificar se um conjunto de séries temporais yt e xt cointegram, é preciso seguir os procedimentos propostos por Engle e Granger (1987):

  1. Verificar se as séries são estacionárias
  2. Estimar a regressão cointegrante das séries: yt = a + bxt + et
  3. Verificar se o resíduo da regressão cointegrante é estacionário usando os valores críticos de Engle e Granger (1987)
  4. Se o resíduo for estacionário, a regressão cointegrante não é espúria e pode-se estimar um modelo de correção de erros para obter a relação de equilíbrio das séries

A seguir mostraremos como aplicar o teste com um par de ações negociadas na B3 e para isso usaremos a linguagem R.

Exemplo no R

O exemplo utilizará o par de ações PETR3 e PETR4 no período de 28 de março de 2021 até 28 de março de 2022. Os dados são públicos e podem ser acessados pelo Yahoo Finance, havendo opção de usar pacotes ou web scraping para extrair os dados. O código abaixo faz a extração e tratamento de dados:

Antes de partir para o teste vale visualizar as séries temporais:

As séries parecem apresentar uma trajetória de passeio aleatório, como a do bêbado e seu cachorro, algo comum em séries de ativos financeiros.

Agora vamos para a primeira etada do teste de cointegração de Engle-Granger, ou seja, verificar se as séries são estacionárias. Podemos fazer isso com o teste ADF através da função adf.test():

Conforme os resultados, falhamos em rejeitar a hipótese nula do teste de a série ter raiz unitária, ou seja, as séries são não-estacionárias nos testes considerados (sem constante com tendência, com constante sem tendência e com constante e tendência).

Identificado que as séries são integradas de mesma ordem (nesse caso I(1), conforme pode ser confirmado usando a função forecast::ndiffs), podemos prosseguir com as etapas 2 e 3 que envolvem estimar a regressão cointegrante e verificar a estacionariedade do resíduo desta regressão. No R, isso tudo pode ser feito com a função coint.test(), que já toma o cuidado de usar os valores críticos corretos para testar os resíduos, conforme MacKinnon (1991).

Note que a função aplica 3 especificações: sem tendência, com tendência e com tendência ao quadrado. Em outros pacotes estatísticos e econométricos, como no Gretl, considera-se geralmente somente a primeira. Conforme os resultados, pelo p-valor da primeira especificação, sem tendência, temos que o resíduo da regressão cointegrante é estacionário. Em outras palavras, há evidências de que as séries PETR3 e PETR4 cointegram, para a amostra de dados selecionada.

Saiba mais

Para se aprofundar nos tópicos de cointegração, mecanismo de correção de erros e séries temporais de maneira geral, considere dar uma olhada no curso de Séries Temporais da Análise Macro.

Referências

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.

MacKinnon, J. G. (1991). Critical values for cointegration tests, Ch. 13 in Long-run Economic Relationships: Readings in Cointegration, eds. R. F. Engle and C. W. J. Granger, Oxford, Oxford University Press.

Murray, M. P. (1994). A drunk and her dog: an illustration of cointegration and error correction. The American Statistician, 48(1), 37-39.

 


1 Para entender mais sobre diferenciação veja este post.

Regressões Espúrias: como identificar usando o R

By | Data Science

Regressão espúria é quando tentamos relacionar variáveis que, por possuírem propriedades estatísticas semelhantes, apresentam correlação alta e significativa mesmo que não faça sentido. O cartum abaixo ilustra perfeitamente esse problema:

Note que a conclusão que o personagem do cartum chegou ao olhar um gráfico de linha dos dados não aparenta se sustentar se fizermos uma análise mais robusta, mesmo que para este caso nem seja necessário. Ou seja, apesar de os dados apresentarem uma propriedade estatística comum — de tendência de crescimento ao longo do tempo —, não há nada plausível que justifique a conclusão de que se todos rasparem a cabeça as vendas irão aumentar. Tal conclusão abriria espaço para outras interpretações ainda mais absurdas.

Exemplos de correlações espúrias como essa não faltam e acontecem rotineiramente, mas com menor frequência, até hoje. Uma rápida procura no Google, em meios de comunicação ou nas redes sociais é mais do que suficiente para encontrar algumas análises equivocadas. Existe até mesmo um site famoso (Spurious Correlations - Tyler Vigen) que compila diversos exemplos através de gráficos relacionando variáveis de séries temporais ao longo do tempo; e os resultados são impressionantemente bizarros, vale a pena dar uma olhada!

regressão espúria é bastante comum em séries temporais, de modo que geralmente encontramos evidência estatística errônea de uma relação linear entre duas ou mais séries. Isso ocorre porque séries que apresentam tendência ao longo do tempo, por exemplo, são ditas não estacionárias, ou seja, são séries que vão crescer indefinidamente sem voltar ao seu valor médio. E essa característica de não estacionariedade pode levar a obtermos uma correlação significativa entre as séries somente por crescerem com o tempo, ou seja, não há necessariamente uma relação, mas ambas as séries crescem independentemente com a ação do tempo.

De maneira um pouco mais formal, teremos uma regressão espúria entre duas séries temporais quando:

  • As séries Yt e Xt, independentes, são integradas de ordens diferentes;
  • As séries Yt e Xt, independentes, são integradas de mesma ordem;
  • Nesse caso, ou seja, com séries temporais não estacionárias, a regressão Yt = a +bXt + et é espúria.

Conforme o trabalho de Granger e Newbold (1974) — que já conta com mais de 10 mil citações —, através de simulações foi mostrado que regressões espúrias apresentam, em geral, algumas características:

  • R2 alto
  • Estatística Durbin Watson (DW) baixa
  • Coeficientes significativos (alta chance de rejeitar H0: b = 0)
  • Razão t não segue t de Student
  • Estatística F não segue distribuição F

Consequências

Dessa forma, quando lidando com séries temporais não estacionárias devemos tomar muito cuidado, dado que:

  • A econometria clássica não é válida quando as séries são não estacionárias;
  • Em particular, se as séries não estacionárias forem independentes, obtém-se regressões espúrias;
  • Diferenciar as séries até obter estacionariedade pode não resolver o problema, se o interesse é obter relações de longo prazo;
  • Análise de cointegração pode ser uma solução.

De fato, a introdução do conceito de cointegração na literatura na década de 1980 levou os economistas Engle e Granger a ganharem o Prêmio Nobel de Economia de 2003.

Exemplo prático no R

Uma vez que você tenha entendido o que é uma regressão espúria de séries temporais, fica mais fácil observar esse fenômeno através de um exemplo prático.

Utilizarei aqui dados reais disponíveis publicamente: serão duas séries temporais que medem o interesse das pessoas por termos de busca no Google, mais especificamente as procuras por "entrega ifood" e "dinossauro brinquedo" no Brasil obtidas no Google Trends. Esses termos são bem aleatórios, certo? A escolha foi intencional, com vistas a retratar que o problema de regressão espúria pode acontecer mesmo com duas séries que, a princípio, não possuem nenhuma relação, mas podem apresentar resultados estatisticamente significativos.

O código abaixo coleta, trata e gera uma visualização dos dados:

Note que as séries apresentam ser não estacionárias (tendência) e parecem, curiosamente, "caminhar juntas" ao longo do tempo. Podemos confirmar essa leitura calculando a correlação de Pearson entre as séries:

De fato, obtemos uma correlação alta para as séries, apesar de não fazer muito sentido.

Agora vamos regredir a série com o termo de busca "entrega ifood" contra a série do termo "dinossauro brinquedo" para verificar se encontramos uma relação linear significativa.

Que maravilha, não? Encontramos coeficiente bastante significativo, ao nível de 5%, e um R2 relativamente alto (0,63). O que isso significa? Apenas que encontramos uma regressão espúria, conforme pode ser confirmado pela estatística de Durbin-Watson abaixo, menor do que o R2:

Somente com essas informações já é suficiente para concluir que a regressão é espúria — mesmo que já soubéssemos disso desde o início pela própria escolha das variáveis —, mas você pode ir mais a fundo e verificar os resíduos da regressão. Em geral, nestes casos os resíduos serão não estacionários.

Saiba mais

Espero que o exercício tenha sido intuitivo o suficiente, sem pecar na formalidade, para entender sobre regressões espúrias e como identificá-las em modelos de séries temporais. Para se aprofundar no assunto confira os cursos de Análise de Séries Temporais e Econometria usando R e Python da Análise Macro.

Referências

Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente