Baixando dados do IPEADATA, FGV, Banco Central e IBGE com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

É com enorme felicidade que tenho visto a maior penetração do no país. Ao longo das últimos meses, por onde passo, sou abordado por pessoas que conhecem a Análise Macro e estão interessadas em aprender o R. Passados dois anos do início desse projeto - sim, estamos comemorando dois anos! -, não deixa de ser bastante auspicioso verificar o avanço do uso da linguagem entre estudantes, profissionais de mercado e professores. Uma das formas de avaliar esse avanço, diga-se, é na produção de pacotes para coleta de dados nas principais bases do país. Nesse post, vou falar dos pacotes atualmente disponíveis para pegar dados do IPEADATA, FGV, IBGE Banco Central. Caso tenha esquecido de algum, por favor, deixe aí nos comentários!

BETS

O pacote que mais tenho utilizado atualmente para pegar dados dessas bases é o BETS, pacote produzido pelo pessoal da FGV. Está disponível no CRAN e tem se mostrado bastante estável, à medida que alguns bugs foram corrigidos. Ele pode ser utilizado para pegar dados do Banco Central, IBGE e da FGV. Um vignette do pacote está disponível aqui.


library(BETS)

BETS.chart(ts = 'iie_br', file = "iie_br", open = TRUE)

rbcb

Outro pacote que tenho utilizado é o rbcb, produzido pelo Wilson Freitas. Ele serve, como o próprio nome já entrega, para coletar dados do Banco Central.

library(rbcb)
library(ggplot2)
ipca = get_series(433)
ggplot(ipca, aes(x=date))+
 geom_line(aes(y=ipca$`433`), col='darkblue')

ribge

Um pacote que conheci recentemente foi o ribge, que ainda está em fase de desenvolvimento, disponível no GitHub. Tomare que ao longo dos próximos meses esteja plenamente funcional!

ecoseries

Por fim, outro pacote que também coleta dados do SIDRA IBGE, Banco Central e IPEADATA é o ecoseries, disponível no CRAN.


library(ecoseries)
library(BETS)
library(ggplot2)
library(forecast)

ipca = window(ts(series_ipeadata('36482', 
 periodicity = 'M')$serie_36482$valor,
 start=c(1979,12), freq=12), start=c(1999,08))

base = window(BETS.get(1833), start=c(1999,08))

data = ts.intersect(base, ipca)

par(mar=c(5,4,4,5)+.1)
plot(data[,1]/1000000, xlim=c(2000,2017), xlab='', ylab='Base Monetária',
 col='red', lty=1, lwd=2)
par(new=T)
plot(data[,2], xlim=c(2000,2017), xlab='', ylab='', 
 xaxt='n',yaxt='n', col='blue', lty=1, lwd=2) 
axis(4)
mtext('IPCA',side=4,line=3)
mtext('Base Monetária vs. IPCA', side=3, line=1, font=2)
mtext('Fonte: analisemacro.com.br com dados do IPEA e do BCB.', 
 side=1, line=3, font=1)
legend('topleft', col=c('red','blue'), lty=c(1,1), lwd=c(2,2),
 legend=c('Base', 'IPCA'))
grid()


Na minha visão, o e outras linguagens como o Python serão cada vez mais utilizadas no país, seja para fazer coleta de dados como os exemplos aqui, seja para facilitar/automatizar a vida dos analistas. E, claro, o momento de se tornar fluente nessas linguagens é agora! 🙂

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/05/econometria2.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/cursos-de-econometria/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]
[/et_pb_image][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/11/datascience.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]
[/et_pb_image][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2016/04/canva03.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/macroeconomia-aplicada/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]
[/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.