Calculando a volatilidade do Bitcoin

O Bitcoin é uma criptomoeda que possui a característica de ser volátil, de forma que isso significa incorrer do risco de mercado. Apesar deste senso comum, devemos pensar: o quanto é essa volatilidade? Como podemos mensurá-la? Há diversas formas, e neste post de hoje iremos estimar a volatilidade do Bitcoin através do modelo GARCH utilizando o R.

O modelo GARCH é útil para realizar estimativas da volatilidade de um ativo financeiro, visto as suas propriedades. Séries financeiras tendem a possui volatility cluster, ou seja, valores extremos em diferentes períodos de tempo. Outra questão é que os erros de previsão ao quadrado possuem autocorrelação, de forma que ajudam a explicar a variância, bem como a sua própria variância passada.

Já trabalhamos com aplicações do mesmo modelo em post passados:

Bem como ensinamos a criar modelos de volatilidade em nosso curso de Econometria Financeira usando o R.

Com estas considerações, podemos utilizar os retornos da Bitcoin (em USD) diários para a modelagem de sua volatilidade com um GARCH(1,1).

Primeiro, carregamos os pacotes necessários.

Em seguida, buscamos os dados do Bitcoin utilizando o pacote {crypto2}.

Podemos visualizar a série de retornos diárias do Bitcoin, de forma a obter uma análise sobre suas características.

Com efeito, podemos especificar o modelo e estimar os coeficientes.

__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.