Análise do Comércio Varejista com o R

O IBGE divulgou hoje pela manhã os resultados de abril da Pesquisa Mensal do Comércio (PMC). A PMC conta com script no nosso Curso de Análise de Conjuntura usando o R que automatiza a coleta, tratamento e apresentação dos dados diretamente do site do SIDRA/IBGE. No corte restrito, houve queda na margem de 16,84%. Já na publicação ampliada, que inclui veículos e materiais de construção, houve queda de 17,73% nessa mesma métrica de comparação. Na comparação interanual, com o mesmo mês do ano passado, a queda no varejo ampliado foi de 27,11%.

A abertura por atividades mostra uma queda de 60,58% na margem no volume de Tecidos, vestuário e calçados. Na comparação interanual, a queda foi de 75,62%, sendo a atividade que mais sofreu com a pandemia. Hipermercados e supermercados tiveram crescimento de 5,85% na comparação interanual.

A apresentação completa dos dados da PMC pode ser vista aqui. O script que gera a apresentação estará disponível na Versão 4.0 do nosso Curso de Análise de Conjuntura usando o R.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Ancoragem de Expectativas da Inflação no Brasil: uma avaliação utilizando a linguagem de programação R

Expectativas ancoradas significam que a inflação permanece próxima da meta mesmo após choques relevantes, tornando menos custosa a atuação do Banco Central no combate a pressões inflacionárias. Neste exercício, analisamos diferentes medidas para avaliar a ancoragem das expectativas no Brasil, utilizando a linguagem de programação R como ferramenta para a construção desse exercício, realizando a coleta, tratamento, cálculos e visualização dos resultados.

Como fazer previsões para a inflação desagregada medida pelo IPCA?

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Qual o melhor modelo para prever a inflação medida pelo IPCA?

Neste exercício, testamos 18 modelos diferentes com um conjunto fixo de regressores para previsão da taxa de inflação, medida pelo IPCA. Implementamos o método da validação cruzada, visando obter resultados robustos para comparação de métricas de performance. Apresentamos os resultados gerais e desagregados por horizontes de previsão, além de automatizar todo o processo utilizando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.