Análise do Mercado de Crédito com o R

A disponibilidade de crédito é uma variável de suma importância para impulsionar tanto o consumo das famílias quanto o investimento das firmas. Nesse Comentário de Conjuntura, por suposto, seguindo a análise do mercado de crédito que faço no Curso de Análise de Conjuntura usando o R, vamos dar uma olhada em alguns aspectos desse mercado. Para isso, vou utilizar aqui o pacote Quandl para pegar as séries do Banco Central diretamente para o R.

Para começar, vamos pegar as concessões mensais de crédito.


library(Quandl)
library(ggplot2)
library(scales)

credito_total = Quandl('BCB/20631', order='asc')

Na sequência, podemos pegar os dados divididos por pessoa física e jurídica.

</span>

library(tidyverse)

credito_pj = Quandl('BCB/20632', order='asc')
credito_pf = Quandl('BCB/20633', order='asc')

credito_por_p = inner_join(credito_pj, credito_pf, by = 'Date') %>%
rename(pj = Value.x, pf = Value.y)
<pre>

Na sequência, pegamos os dados divididos por crédito livre crédito direcionado.

</pre>
credito_livre = Quandl('BCB/20634', order='asc')
credito_direc = Quandl('BCB/20685', order='asc')

credito_por_recurso = inner_join(credito_livre,
credito_direc, by = 'Date') %>%
mutate(livre=Value.x, direc=Value.y, .keep='unused')
<pre>

A seguir, fazemos a divisão desse estoque entre crédito público e privado.


## Crédito Público vs. Privado
privado <- Quandl('BCB/2043', start_date = '2000-01-01', order='asc')
publico <- Quandl('BCB/2007', start_date = '2000-01-01', order='asc')

data <- inner_join(privado, publico, by='Date')%>%
mutate(privado=Value.x/(Value.x+Value.y)*100,
publico=Value.y/(Value.y+Value.x)*100,
.keep='unused') %>%
pivot_longer(names_to='variavel', values_to='valor', cols=-Date)

 

Uma recuperação mais pujante do mercado de crédito é crucial para que possamos acelerar o crescimento da economia brasileira. Para isso, contudo, são fundamentais as reformas microeconômicas que estão no radar tanto do Congresso Nacional quanto do próprio Banco Central.

_______________________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.