Relatório #27 - IGP-M

O IGP-M é um índice de preços construído e divulgado pela Fundação Getúlio Vargas, como forma de monitorar o movimento de preços dos produtos em todos os seus estágios de produção. O IGP-M é composto por três indicadores, cada um representado um peso dentro do índice, sendo eles: IPA (60%), IPC (30%) e INCC (10%). No Relatório AM de hoje, iremos visualizar o movimento do IGP-M dentro do mês de novembro de 2021.

No mês de novembro, o IGP-M subiu 0,02% em relação ao mês de outubro. A desaceleração foi puxada, principalmente, pelo IPA, que na variação mensal, configurou uma queda de -0,29%, ao contrário dos outros índices, como no caso do IPC, que exibiu um aumento de 0,93% no mês de novembro, bem como o INCC, que subiu 0,71% no mês.

Podemos ver no gráfico abaixo o movimentos dos índices nos últimos meses.

No acumulado em 12 meses, o IGP-M exibiu uma variação de aproximadamente 17,9%. Apesar da diminuição nos últimos meses, temos ainda um valor alto, se comparado com os resultados acumulados nos últimos anos.

Podemos visualizar em conjunto a variação acumulada de todos os índices. Vê-se a queda do INCC e do IPA nos últimos meses, porém, há o aumento do IPC.

________________________

(*) Para entender mais sobre inflação e análise de conjuntura econômica, confira nosso Curso de Análise de Conjuntura usando o R - Versão 5.0.

________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Decomposição do Impulso de Crédito no Brasil usando Python

Neste exercício, mostramos como o Python pode ser utilizado para calcular uma métrica central para a compreensão da dinâmica entre crédito e atividade econômica no Brasil, a partir de um ciclo completo e altamente reprodutível de coleta, tratamento e análise de dados.

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.