Tag

cointegração Archives - Análise Macro

Cointegração e Pair Trading no Python

By | mercado financeiro

Pair Trading é uma estratégia de trading amplamente conhecida, que utiliza métodos estatísticos para obter pares de ativos que sejam neutros em relação ao mercado. Um método para criar a estratégia de Pair Trading é através do teste de cointegração, de forma que se possa obter uma relação entre os pares, no caso ações de empresas listadas na bolsa. Neste post de hoje, ensinaremos a como realizar esse procedimento utilizando o Python.

Para utilizar o Pair Trading, devemos encontrar ativos que se relacionam de alguma forma, afinal, se eles possuem uma forte relação (principalmente estatística), qualquer desvio da diferença de seus preços pode ser considerada uma anomalia, possibilitando um ganho, seja comprando ou entrando vendido na ação, a depender da situação.

Mas como podemos encontrar ativos que se relacionam e exprimem relações estatísticas entre si? E como podemos criar sinais de forma que possamos saber quando comprar ou vender os ativos? Existem diferentes métodos, entretanto, um amplamente conhecido é a utilização do Teste de Cointegração para saber se as ações possuem uma forte relação estatística.

A partir dessa relação, podemos criar um modelo de regressão linear, que possibilite expressar a estimativa do preço de uma ação a partir de sua relação com outra ação. A diferença do resultado da estimativa de um ativo com o preço do outro resultará no spread (o desvio entre o preço das duas ações). Para construir os sinais de compra e venda, transformamos os desvios (spread) em um Escore Z, de forma que possamos mensurá-los em distâncias de desvio padrão.

Abaixo, mostramos o passo a passo deste método, utilizando os preços das ações JOPA3 e MDIA, no período entre janeiro de 2021 e janeiro de 2022. Deve-se salientar que a tarefa de encontrar ativos que possuem uma relação de cointegração não é algo fácil, sendo necessário uma investigação profunda de ativos que façam parte de setores iguais e tenham uma estrutura similar. Outro ponto a se observar é a amostra do tempo, que por vezes, pode não ser significativa em períodos diferentes, mesmo que com os mesmo ativos.

O primeiro passo será capturar os preços de fechamentos das empresas JOPA3 e MDIA3 durante o período citado.

Visualizamos a relação entre os dois ativos durante o período.

Em seguida, queremos saber se de fato as ações possuem alguma relação, e para isso, utilizamos a função coint() para realizar um Teste de Engle & Granger. No resultado, vemos que encontramos um valor abaixo de 5%, o que nos leva a rejeitar a Hipótese Nula de não cointegração.

Com a confirmação da cointegração entre as duas ações, podemos modelar os spreads entre as duas variáveis de forma que possamos criar os sinais de comprar e venda. Realizamos esse procedimento através de uma regressão linear entre as duas ações. Calculamos o spread pela diferença do preço do MDIA3 em relação ao preço do JOPA3, ponderado pelo coeficiente encontrado no modelo.

Transformamos esse spread, calculando o z score, de forma que possamos medir as variações em termos de desvio padrão.

Por fim, criamos os sinais através do ratio entre as duas ações transformados em z score com os limites de desvio padrão para entrar comprado ou vendido nas ações.  Com efeito, construímos uma simulação de investimento com um capital de 1000 para cada ação e visualizamos o resultado da estratégia durante o período.


__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Referências

QuantRocket, Introduction to Pairs Trading

Sabir Jana, Statistical Arbitrage with Pairs Trading and Backtesting

O andar do bêbado e seu cachorro: entendendo cointegração no R

By | Data Science

Muito utilizado no mercado financeiro para estratégias long-short, arbitragem estatística, pairs trading e em análise e previsão de séries temporais macroeconômicas, o conceito de cointegração é ao mesmo tempo fascinante e intimidador de se compreender. Por isso, neste breve texto iremos explicar o que é cointegração com um exemplo intuitivo e fazer um exercício aplicado com pares de ações brasileiras usando o R!

Esse texto faz parte de uma série de publicações sobre séries temporais e pode ser melhor aproveitado se você ler o texto anterior sobre regressões espúrias (link aqui).

A analogia do bêbado e seu cachorro

As definições matemáticas de cointegração, e tópicos relacionados, são um tanto quanto sofisticadas, mas o seu conceito é simples o suficiente para ser introduzido com a cômica analogia do andar do bêbado e seu cachorro. Os créditos da analogia são inteiramente de Michael P. Murray que escreveu, em 1994, um paper didático de apenas 3 páginas elucidando o conceito de cointegração com o conto do andar do bêbado.

Imagine que você esteja andando na rua da sua cidade e aviste um bêbado que acaba de sair do bar, vagando em direção a sua casa. Você percebe que o bêbado caminha de maneira peculiar e imprevisível, algumas vezes se desviando para a esquerda e outras para a direita enquanto tenta, com dificuldades, seguir o seu caminho. Ao observar a trajetória do bêbado pode-se dizer que seus passos são nada mais do que uma sequência aleatória de passos. Na econometria, chamamos a trajetória do bêbado de passeio aleatório (random walk), de maneira a descrever o comportamento de muitas das séries econômicas que existem.

Por andar de forma aleatória, se você desviar o olhar e parar de observar o bêbado andando, será difícil dizer onde o bêbado estará após um determinado tempo, pois sua trajetória é imprevisível. Uma das características das trajetórias do tipo passeio aleatório, como a do bêbado, é de que a melhor previsão sobre um valor futuro é o último valor observado. Dessa forma, o seu palpite sobre a localização atual do bêbado poderia ser algo como o último lugar onde você o avistou, ou seja, na saída do bar.

Agora imagine que o bêbado tenha um cachorro amigo, sem coleira, que o acompanha. De forma similar ao bêbado, o cachorro também segue uma sequência aleatória de passos, sendo atraído por cada cheiro novo e estímulos que sente no caminho. Sempre que o bêbado percebe que o cachorro foi muito longe ele o chama: "Thor!". E o cachorro obedece o chamado retornando para perto de seu dono, caracterizando assim uma correção da distância entre ambos.

Se fossemos representar por meio de um gráfico a trajetória do bêbado e do cachorro ao longo do tempo e em relação a um ponto de referência qualquer (como o bar), seria algo como:

Observando as trajetórias de ambos, pode-se dizer que mesmo que a localização atual do bêbado após um tempo seja imprevisível, a localização do cachorro é relativamente previsível, pois ele não se afastará muito do seu dono. Dessa forma, agora um bom palpite sobre a localização do bêbado, por exemplo, pode ser dado uma vez que você tenha encontrado o cachorro, e vice-versa, pois conforme seguem dando passos aleatórios também corrigem a distância entre ambos. Na econometria, chamamos isso formalmente de mecanismo de correção de erros.

Note, também, que ambas as trajetórias são o que chamamos de séries temporais não-estacionárias, dado que quanto mais tempo passa é mais provável que o bêbado e seu cachorro estejam vagando bem longe de onde foram vistos por último. Se for verdade que a distância entre eles seja corrigida por um mecanismo de correção de erros, então a distância entre as trajetórias é dita cointegrada de ordem zero.

Para entender o que a expressão cointegrada de ordem zero significa, vale primeiro entender o que são séries integradas. Séries temporais não-estacionárias que se tornam estacionárias quando diferenciadas1 n vezes são ditas integradas de ordem n ou, simplesmente, I(n). Para duas séries temporais serem cointegradas, cada série precisa ser integrada de mesma ordem, n; por isso o termo cointegração. Sendo assim, um conjunto de séries temporais, todas integradas de ordem n, são ditas cointegradas se e somente se alguma combinação linear das séries é integrada de ordem menor do que n. Tal combinação linear foi chamada de relação de cointegração, conforme o trabalho de Engle e Granger (1987).

Cointegração no sentido de Engle-Granger

De maneira um pouco mais formal, partindo de um modelo de passeio aleatório para as trajetórias do bêbado (xt) e do cachorro (yt), temos:

ut = xt - xt-1

wt = yt - yt-1

onde ut e wt representam, respectivamente, o passeio aleatório do bêbado e do cachorro ao longo do tempo t e são ruído branco estacionários. Podemos então modelar a "trajetória cointegrada" do bêbado e do cachorro como:

ut + c(yt-1 - xt-1) =  xt - xt-1

wt + d(xt-1 - yt-1) =  yt - yt-1

onde ut e wt são novamente os passeios aleatórios do bêbado e do cachorro e os termos adicionais no lado esquerdo das equações são os termos de correção de erro pelo quais o bêbado e o cachorro corrigem a distância um do outro, ou seja, permanecem próximos. Podemos então dizer que, das equações acima, (yt-1 - xt-1) é uma relação de cointegração entre a trajetória do bêbado e do cachorro. Dessa forma, se estabelece uma relação de equilíbrio de longo prazo entre as trajetórias.

Note que se os termos de correção de erros forem não-estacionários, então as trajetórias modeladas para o bêbado e o cachorro também seriam não-estacionárias, portanto ambos iriam provavelmente se distanciar bastante ao longo do tempo. Nesse caso, diríamos que as séries temporais das trajetórias do bêbado e do cachorro não são cointegradas de ordem zero. No entanto, Engle e Granger (1987) provaram que se a trajetória do bêbado e do cachorro são ambas integradas de ordem 1 e seguem o descrito nas equações acima, então as trajetórias cointegram.

A analogia do bêbado e seu cachorro é uma boa forma de entender os conceitos básicos de cointegração e do mecanismo de correção de erro, no entanto, há inúmeros detalhes técnicos que devem ser considerados em aplicações com dados reais. Para se aprofundar mais no tema considere o curso de Séries Temporais da Análise Macro.

O conceito de cointegração é bastante utilizado em exercícios de macroeconomia, mas também pode ser usado no mercado financeiro com o objetivo de identificar relações — como a do bêbado e seu cachorro — entre ativos e realizar operações lucrativas com a técnica. Um exemplo disso são as estratégias de pairs trading, onde se realiza operações com pares de ativos que apresentem relação de cointegração de modo a obter lucro com a arbitragem. O grande desafio dessa aplicação é encontrar o par de ativo que apresente essas características.

Teste de Cointegração de Engle-Granger

De maneira prática, para verificar se um conjunto de séries temporais yt e xt cointegram, é preciso seguir os procedimentos propostos por Engle e Granger (1987):

  1. Verificar se as séries são estacionárias
  2. Estimar a regressão cointegrante das séries: yt = a + bxt + et
  3. Verificar se o resíduo da regressão cointegrante é estacionário usando os valores críticos de Engle e Granger (1987)
  4. Se o resíduo for estacionário, a regressão cointegrante não é espúria e pode-se estimar um modelo de correção de erros para obter a relação de equilíbrio das séries

A seguir mostraremos como aplicar o teste com um par de ações negociadas na B3 e para isso usaremos a linguagem R.

Exemplo no R

O exemplo utilizará o par de ações PETR3 e PETR4 no período de 28 de março de 2021 até 28 de março de 2022. Os dados são públicos e podem ser acessados pelo Yahoo Finance, havendo opção de usar pacotes ou web scraping para extrair os dados. O código abaixo faz a extração e tratamento de dados:

Antes de partir para o teste vale visualizar as séries temporais:

As séries parecem apresentar uma trajetória de passeio aleatório, como a do bêbado e seu cachorro, algo comum em séries de ativos financeiros.

Agora vamos para a primeira etada do teste de cointegração de Engle-Granger, ou seja, verificar se as séries são estacionárias. Podemos fazer isso com o teste ADF através da função adf.test():

Conforme os resultados, falhamos em rejeitar a hipótese nula do teste de a série ter raiz unitária, ou seja, as séries são não-estacionárias nos testes considerados (sem constante com tendência, com constante sem tendência e com constante e tendência).

Identificado que as séries são integradas de mesma ordem (nesse caso I(1), conforme pode ser confirmado usando a função forecast::ndiffs), podemos prosseguir com as etapas 2 e 3 que envolvem estimar a regressão cointegrante e verificar a estacionariedade do resíduo desta regressão. No R, isso tudo pode ser feito com a função coint.test(), que já toma o cuidado de usar os valores críticos corretos para testar os resíduos, conforme MacKinnon (1991).

Note que a função aplica 3 especificações: sem tendência, com tendência e com tendência ao quadrado. Em outros pacotes estatísticos e econométricos, como no Gretl, considera-se geralmente somente a primeira. Conforme os resultados, pelo p-valor da primeira especificação, sem tendência, temos que o resíduo da regressão cointegrante é estacionário. Em outras palavras, há evidências de que as séries PETR3 e PETR4 cointegram, para a amostra de dados selecionada.

Saiba mais

Para se aprofundar nos tópicos de cointegração, mecanismo de correção de erros e séries temporais de maneira geral, considere dar uma olhada no curso de Séries Temporais da Análise Macro.

Referências

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.

MacKinnon, J. G. (1991). Critical values for cointegration tests, Ch. 13 in Long-run Economic Relationships: Readings in Cointegration, eds. R. F. Engle and C. W. J. Granger, Oxford, Oxford University Press.

Murray, M. P. (1994). A drunk and her dog: an illustration of cointegration and error correction. The American Statistician, 48(1), 37-39.

 


1 Para entender mais sobre diferenciação veja este post.

Turmas de Inverno: último dias de inscrições!

By | Cursos da Análise Macro

As inscrições para as Turmas de Inverno dos nossos Cursos Aplicados de R terminam hoje, 14/06, às 23h59. Há vagas para 15 Cursos Livres e 3 Formações. As turmas de Inverno terão início no dia 15/06 e contarão com o nosso Curso de Introdução ao R para Análise de Dados, de modo que não é necessário nenhum conhecimento prévio na linguagem. Para todos os detalhes sobre as Turmas de Inverno, continue lendo esse informativo...

Nós abrimos vagas para quatro áreas dos nossos Cursos Livres: Data Science, Macroeconomia Aplicada, Econometria e Finanças. Haverá vagas para 15 Cursos, a saber:

Cursos de Data Science

Macroeconomia Aplicada

Cursos de Econometria

Cursos de Micro Aplicada

Cursos de Finanças

Além disso, também abrimos as inscrições para as nossas Formações:

Plano Disponível

Para essa Turma, estamos ofertando um plano único que envolve como bônus para qualquer curso acima o nosso Curso de R para Análise de Dados, Certificado, acesso por 12 meses às aulas gravadadas e plataforma tira-dúvidas exclusiva.

Investimento

Os preços dos Cursos variam de acordo com a complexidade do conteúdo. Os alunos poderão financiar a aquisição dos Cursos em até 10x sem juros no cartão de crédito.

Especialmente para essa edição dos nossos Cursos, nós ofereceremos 30% de desconto para quem adquirir todos os cursos de uma das nossas trilhas. Para garantir o desconto, vá direto ao link abaixo:

Qualquer dúvida adicional, por favor, mande e-mail para comercial@analisemacro.com.br.

______________

Turmas de Inverno: últimos dias de inscrições!

By | Cursos da Análise Macro

As inscrições para as Turmas de Inverno dos nossos Cursos Aplicados de R estão chegando ao fim. Há vagas para 15 Cursos Livres e 3 Formações. As turmas de Inverno terão início no dia 15/06 e contarão com o nosso Curso de Introdução ao R para Análise de Dados, de modo que não é necessário nenhum conhecimento prévio na linguagem. Para todos os detalhes sobre as Turmas de Inverno, continue lendo esse informativo...

Nós abrimos vagas para quatro áreas dos nossos Cursos Livres: Data Science, Macroeconomia Aplicada, Econometria e Finanças. Haverá vagas para 15 Cursos, a saber:

Cursos de Data Science

Macroeconomia Aplicada

Cursos de Econometria

Cursos de Micro Aplicada

Cursos de Finanças

Além disso, também abrimos as inscrições para as nossas Formações:

Plano Disponível

Para essa Turma, estamos ofertando um plano único que envolve como bônus para qualquer curso acima o nosso Curso de R para Análise de Dados, Certificado, acesso por 12 meses às aulas gravadadas e plataforma tira-dúvidas exclusiva.

Investimento

Os preços dos Cursos variam de acordo com a complexidade do conteúdo. Os alunos poderão financiar a aquisição dos Cursos em até 10x sem juros no cartão de crédito.

Especialmente para essa edição dos nossos Cursos, nós ofereceremos 30% de desconto para quem adquirir todos os cursos de uma das nossas trilhas. Para garantir o desconto, vá direto ao link abaixo:

Qualquer dúvida adicional, por favor, mande e-mail para comercial@analisemacro.com.br.

______________

Cursos de Econometria: inscrições abertas!

By | Cursos da Análise Macro

As inscrições para os Cursos de Econometria da Análise Macro estão abertas! O 1º lote com 30% de desconto fica disponível por 24h, somente hoje, 28/07. A partir de amanhã, 29/07, serão aceitas inscrições com o preço cheio. A novidade dessa edição especial dos Cursos é o novo Curso de Análise de Séries Temporais. Com o programa totalmente reformulado, o Curso visa dar uma introdução aplicada à econometria de séries temporais. Abaixo, todos os Cursos disponíveis na trilha de econometria:

Além disso, também abrimos as inscrições para a nossa Formação:

Plano Único

Será ofertado um Plano Único com acesso ao conteúdo dos Cursos por 12 meses, suporte customizado do professor e acesso ao Clube do Código também por 12 meses. Nosso objetivo com isso é dar um treinamento totalmente customizado para os alunos inscritos.

Investimento

Os preços dos Cursos variam de acordo com a complexidade do conteúdo. Os alunos poderão financiar a aquisição dos Cursos em até 10x sem juros no cartão de crédito.

Qualquer dúvida adicional, por favor, mande e-mail para comercial@analisemacro.com.br.

______________

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente