ipca

Como gerar cenários para modelos de previsão no Python?

Gerar cenários para as variáveis exógenas é uma etapa crucial da modelagem preditiva, pois é o que define a trajetória projetada da variável de interesse. Diferentemente dos modelos univariados, aqui precisamos informar os valores futuros das variáveis independentes para prever a variável dependente. Há diversas formas de fazer isso e neste exercício mostramos algumas possibilidades aplicadas à previsão do IPCA usando Python.

IPCA de outubro surpreende mercado, mas fica em linha com a previsão da Análise Macro

O IBGE divulgou recentemente os dados de inflação de outubro/2024. A previsão da Análise Macro em 14 de setembro era de um aumento do IPCA em 0,48% para o mês de outubro, com viés altista, enquanto que o indicador mostrou uma variação de 0,56%, puxado por despesas com habitação. Por sua vez, a previsão de mercado em 13 de setembro era de 0,31% de aumento na inflação, de acordo com o relatório Focus/BCB.

IPCA de setembro vem em linha com previsão da Análise Macro

O IBGE divulgou recentemente os dados de inflação de setembro/2024. A previsão da Análise Macro era de um aumento do IPCA em 0,39% no mês, com viés altista, enquanto que o indicador mostrou uma variação levemente superior, de 0,44%, puxado por despesas com habitação. Por sua vez, a previsão de mercado era de 0,51% de aumento na inflação, de acordo com o relatório Focus/BCB.

Mensuração de riscos inflacionários com regressão quantílica no R

O câmbio tem mais impacto sobre a inflação quando a inflação está elevada? Como a inércia inflacionária se comporta em regimes diferentes de inflação? Estas e outras questões macroeconômicas podem ser respondidas com análises de riscos através de regressão quantílica. Neste exercício mostramos o caminho para estimar uma Curva de Phillips Quantílica (CPQ) para o Brasil usando a linguagem R.

Análise regional da inflação com dados do IBGE usando Python

Os dados desagregados do IPCA fornecem informações detalhadas sobre o comportamento de preços no Brasil a nível de região metropolitana e município, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.