Detectando anomalias com o pacote {anomalize}

No Hackeando o R de hoje, mostraremos como capturar anomalias de séries temporais de forma rápida e simples. A grosso modo, essas anomalias nas séries aparecem quando eventos não esperados "distorcem" os seus valores, portanto, quando se trabalha com uma análise dos dados, é importante saber quais são esses valores e quando ocorreram, para isso, o pacote {anomalize} nos ajuda nessa tarefa.

O pacote por padrão utiliza o método STL (caso queira se aprofundar no assunto veja esse post), retirando os componentes de tendência e sazonalidade e evidenciando as anomalias.

Iremos utilizar dados de preços e retornos de ações como exemplo, importando-os do ano de 2020 até o dia de hoje. Caso queira saber mais sobre, veja esse post.

 

library(tidyquant)
library(tidyverse)
library(timetk)
library(anomalize)
library(tibbletime)
# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- "2019-12-01"

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
from = start,
src = "yahoo") %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-`(tickers)

# Calcula os retornos mensais

asset_returns <- Return.calculate(prices,
method = "log") %>%
na.omit() %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date")


# Transforma os dados em long

asset_returns_long <- asset_returns %>%
pivot_longer(!date, names_to = "asset", values_to = "value")

Com nossos dados em mãos, podemos utilizar as funções dos pacote. A primeira, time_decompose(), nos fornece a decomposição da série, nos retornando as colunas dos nossos dados atuais observados (observed), os valores da sazonalidade (season), tendência (trend), e o "restante", que são os valores dos dados observados menos a sazonalidade e tendência.

A segunda função, anomalize(), nos fornece a detecção de anomalias, examinando a coluna "remainder".

Por fim, utilizamos a função time_recompose() para calcular os outliers com base nos valores dos dados observados.


# Cria o tibble com valores dos componentes e da anomalia

asset_anomalized <- asset_returns_long %>%
group_by(asset) %>%
time_decompose(value, merge = TRUE) %>%
anomalize(remainder) %>%
time_recompose()

Com os dados em mãos, podemos visualizar através da função plot_anomalies().


# Plota as anomalias dos retornos

asset_anomalized %>%
plot_anomalies(ncol = 4, alpha_dots = 0.25)+
ggplot2::labs(title = "Anomalias nos retornos de ações selecionadas",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance.")


O que nos chama a atenção nas anomalias do nossos dados são as datas de maiores ocorrências,  período do advento da pandemia de COVID-19 no Brasil.

Podemos também verificar essas anomalias nos gráficos de decomposição. Como exemplo, utilizamos o ativo PETR4.


# Transforma em tibble

petr4 <- prices %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date") %>%
select(date, petr4 = `PETR4.SA`)

# Decompõe e calcula as anomalias

petr4_anomalized <- petr4 %>%
time_decompose(petr4) %>%
anomalize(remainder) %>%
time_recompose()

# Plota a decomposição com as anomalias

petr4_anomalized %>%
plot_anomaly_decomposition()+
ggplot2::labs(title = "Decomposição STL e anomalias do preço de fechamento da PETR4",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance.")


Vemos também as anormalidades em grande quantidade no mesmo período.

________________________

(*) Para entender mais sobre análise de séries temporais e mercado financeiro, confira nossos curso de Séries Temporais  e Econometria Financeira.
________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise regional do mercado de trabalho com dados do CAGED usando Python

Os microdados dos CAGED fornecem informações detalhadas a nível de cidade, sexo, raça, nível de instrução, idade, salário e outras sobre os trabalhadores formais do Brasil, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Transfer Learning: mostrando porque o Python está na ponta do desenvolvimento

A aprendizagem por transferência (transfer learning) é o reuso de um modelo pré-treinado em um novo problema. Portanto, sua utilização torna-se um avanço enorme para a previsão de diferentes tipos de variáveis, principalmente para aquelas ordenadas no tempo. Mostramos nesta postagem o uso do Transfer Learning com o Python para o caso de Séries Temporais.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.