Colocar modelos em produção pode ser um grande desafio. Lidar com custos monetários, infraestrutura operacional e complexidades de códigos e ferramentas pode acabar matando potenciais projetos. Uma solução que elimina todos estes obstáculos é a recém lançada Shinylive. Neste artigo mostramos um exemplo com um modelo de previsão para o preço do petróleo Brent.
Manter relatórios diários com dados e análises atualizados é um desafio, pois envolve várias etapas: coleta de dados, tratamento de informações, produção de análises e atualização de relatório. Para superar este desafio algumas ferramentas como Python + Quarto + GitHub podem ser usadas para automatizar tudo que for automatizável. Neste artigo mostramos um exemplo com dados do mercado financeiro.
Tratar e analisar dados no Excel pode ser um verdadeiro caos, mesmo que você precise fazer coisas simples como cruzar duas tabelas de dados. Uma solução melhor é o uso de scripts em Python, que possibilitam a automação de tarefas repetitivas e manuais. Neste artigo mostramos um exemplo simples, comparando o Excel versus Python.
Segundo a pesquisa “State of Data Science”, profissionais de dados gastam 3 horas/dia (38% do tempo) apenas preparando os dados, antes mesmo de analisá-los. Neste artigo advogamos que este gasto de tempo pode ser drasticamente reduzido ao utilizar ferramentas open source, como Pandas e Python, para automatizar tarefas repetitivas que costumam ser feitas em Excel.
A etapa de visualização de dados refere-se a uma parte fundamental da análise de dados, pois permite não somente compreender os dados que estamos analisando, mas como também é uma ferramenta útil para explanar os resultados encontrados. Mas qual a forma mais fácil de construir um gráfico, como podemos melhorar a produtividade nesta tarefa? É onde podemos aplicar a gramática dos gráficos e construir com a biblioteca plotnine no Python.