Hackeando o R: agrupando gráficos no R

Uma das etapas mais importante da análise de dados é a apresentação visual. Sabe-se que tanto para quem necessita tirar conclusões a partir dos dados, e também para ouvintes de outros segmentos, a parte visual demonstra-se como essencial para o entendimento do tópico que está sendo discutido. No Hackeando o R de hoje, iremos mostrar como podemos encaixar gráficos de forma que se tenha uma apresentação amigável, simples e rápida, combinando gráficos em apenas uma única figura.

O pacote mais importante no R para a visualização de dados, como todos sabem, é o pacote {ggplot2}. Apesar de suas inumeráveis funcionalidades, alguns pacotes o ajudam a potencializar seu uso. Como mostraremos, os pacotes {patchwork} e o {gridExtra} o ajudam na tarefa especifica de combinar múltiplos gráficos.

library(gridExtra)
library(patchwork)
library(tidyverse)

Para começarmos com os exemplos, primeiro devemos atribuir a um objeto um gráfico feito a partir do {ggplot2}. Utilizaremos o dataset Economics como exemplo, criando três gráficos diferentes.

# Gráfico de linha

psav_line <- economics %>% 
  ggplot(aes(x = date, y = psavert))+
  geom_line()+
  theme_minimal()+
  labs(x = "",
       y = "",
       title = "Personal savings rate - USA")

# Histograma

psav_des <- economics %>% 
  ggplot(aes(psavert))+
  geom_density(binwidth = .1, 
                 fill = "darkblue",
                 colour = "black")+
  theme_minimal()+
  labs(x = "",
       y = "",
       title = "Personal savings rate - USA")

# Gráfico de linha

pce_line <- economics %>% 
  ggplot(aes(x = date, y = pce))+
  geom_line()+
  theme_minimal()+
  labs(x = "",
       y = "",
       title = "Personal consumption expenditures",
       subtitle = "in billions of dollars - USA")

Salvado nossos gráficos, podemos utilizar o pacote {patchwork}, no qual funciona utilizando operadores matemáticos. O "+" é utilizado para deixar os gráficos lado a lado, como uma coluna. O uso de "()" serve para agrupar os gráficos e o "/" para empilhar um em outro.

pce_line + (psav_line / psav_des)+
  plot_annotation(
    title = "Economics Dataset")

Veja como podemos mudar a orientação dos gráficos mudando os operadores:

pce_line + psav_line + psav_des +
  plot_annotation(
    title = "Economics Dataset")

Outro pacote que pode ajudar na combinação de gráficos é o {gridExtra}, que diferentemente do {patchwork}, utiliza-se a função grid.arrange para ordernar os gráficos.

Veja que por padrão, a função empilha os gráficos, como se fosse em formato de linhas.


grid.arrange(psav_line, psav_des)

Também pode se especificar para que sejam ordenados em formato de colunas, podendo também escolher quantas queira.


grid.arrange(pce_line, psav_line, psav_des, ncol= 3)

(*) Quer aprender mais sobre a linguagem R e como construir gráficos? confira nosso Curso de Introdução ao R para análise de dados.

________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.