Avaliando a acurácia de uma previsão com o R

Quem trabalha com previsões quantitativas sabe que uma parte importante de qualquer projeto é a avaliação das previsões geradas pelo(s) modelo(s). É dessa forma que podemos verificar se estamos no caminho correto. Para ilustrar como isso pode ser feito no R, vou construir nesse post um modelo univariado simples para a taxa de desemprego medida pela PNAD Contínua e depois efetuar o processo de avaliação das previsões geradas. Para começar, vamos carregar alguns pacotes...


library(forecast)
library(ggplot2)
library(sidrar)
library(xtable)

Vamos pegar os dados que precisamos do SIDRA com o pacote sidrar...


# Dados Brutos
table = get_sidra(api='/t/6318/n1/all/v/1641/p/all/c629/all')
# Pegar a PEA
pea = table$Valor[table$`Condição em relação à força de trabalho e condição de ocupação (Código)`==32386]
# Pegar a População Desocupada
desocupada = table$Valor[table$`Condição em relação à força de trabalho e condição de ocupação (Código)`==32446]
# Criar Desemprego
desemprego = ts(desocupada/pea*100, start=c(2012,03), freq=12)

Com a função ggtsdisplay do pacote forecast podemos visualizar a nossa série e as funções de autocorrelação como abaixo.

Para a construção de um modelo univariado, teríamos que (1) verificar se a nossa série é estacionária e (2) tentar identificar os coeficientes AR e MA através de funções de autocorrelação. Vamos aqui, entretanto, utilizar um algoritmo de modo a automatizar esse processo através de critérios de informação com a função auto.arima:


sarima = auto.arima(desemprego, max.p=2, max.q=4, max.P = 2, max.Q=2)

Aplicada a função auto.arima sobre a nossa série, temos um modelo SARIMA(1,2,0)(1,1,0)[12]. Com base nesse modelo, podemos agora gerar previsões e, consequentemente, avaliá-las. É comum aqui, por suposto, dividir a nossa amostra em duas subamostras: uma de treino, onde rodamos o nosso modelo e outra de teste, onde são feitas as previsões. Nessa amostra de teste é onde ocorre a comparação com as observações efetivas da nossa série. Como regra de bolso, é comum destinar 70% para a subamostra de treino e o restante para a amostra de teste. Como nossa amostra é, entretanto, curta, vou aqui reservar apenas as 6 últimas observações para o conjunto de teste, de modo a ilustrar apenas o código.


training = window(desemprego, end=end(desemprego)-c(0,6))
test = window(desemprego, start=end(desemprego)-c(0,5))
acuracia = Arima(training, order=c(1,2,0), seasonal = c(1,1,0))
acuraciaf = forecast(acuracia, h=length(test), level=95)

Com o código acima, criamos as nossas subamostras, rodamos o modelo na subamostra de treino e gerar a previsão com base no tamanho do vetor de teste. Por fim, com a função accuracy do pacote forecast podemos avaliar essas previsões.


acc = accuracy(acuraciaf$mean, test)

E aí está a tabelinha que queríamos...

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -0.19 0.23 0.20 -1.51 1.57 0.37 0.87

O erro médio do nosso modelinho é de 0,19 negativos e o RMSE é de 0,23. Para maiores detalhes sobre essas métricas, veja esse post aqui.

Curtiu o tema? Nós exploramos isso e muito mais no nosso Curso de Construção de Cenários e Previsões usando o R, voltado exclusivamente para a construção de previsões quantitativas no R. Dê uma olhada lá e se inscreva na próxima turma!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.