Detectando anomalias com o pacote {anomalize}

No Hackeando o R de hoje, mostraremos como capturar anomalias de séries temporais de forma rápida e simples. A grosso modo, essas anomalias nas séries aparecem quando eventos não esperados "distorcem" os seus valores, portanto, quando se trabalha com uma análise dos dados, é importante saber quais são esses valores e quando ocorreram, para isso, o pacote {anomalize} nos ajuda nessa tarefa.

O pacote por padrão utiliza o método STL (caso queira se aprofundar no assunto veja esse post), retirando os componentes de tendência e sazonalidade e evidenciando as anomalias.

Iremos utilizar dados de preços e retornos de ações como exemplo, importando-os do ano de 2020 até o dia de hoje. Caso queira saber mais sobre, veja esse post.

 

library(tidyquant)
library(tidyverse)
library(timetk)
library(anomalize)
library(tibbletime)
# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- "2019-12-01"

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
from = start,
src = "yahoo") %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-`(tickers)

# Calcula os retornos mensais

asset_returns <- Return.calculate(prices,
method = "log") %>%
na.omit() %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date")


# Transforma os dados em long

asset_returns_long <- asset_returns %>%
pivot_longer(!date, names_to = "asset", values_to = "value")

Com nossos dados em mãos, podemos utilizar as funções dos pacote. A primeira, time_decompose(), nos fornece a decomposição da série, nos retornando as colunas dos nossos dados atuais observados (observed), os valores da sazonalidade (season), tendência (trend), e o "restante", que são os valores dos dados observados menos a sazonalidade e tendência.

A segunda função, anomalize(), nos fornece a detecção de anomalias, examinando a coluna "remainder".

Por fim, utilizamos a função time_recompose() para calcular os outliers com base nos valores dos dados observados.


# Cria o tibble com valores dos componentes e da anomalia

asset_anomalized <- asset_returns_long %>%
group_by(asset) %>%
time_decompose(value, merge = TRUE) %>%
anomalize(remainder) %>%
time_recompose()

Com os dados em mãos, podemos visualizar através da função plot_anomalies().


# Plota as anomalias dos retornos

asset_anomalized %>%
plot_anomalies(ncol = 4, alpha_dots = 0.25)+
ggplot2::labs(title = "Anomalias nos retornos de ações selecionadas",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance.")


O que nos chama a atenção nas anomalias do nossos dados são as datas de maiores ocorrências,  período do advento da pandemia de COVID-19 no Brasil.

Podemos também verificar essas anomalias nos gráficos de decomposição. Como exemplo, utilizamos o ativo PETR4.


# Transforma em tibble

petr4 <- prices %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date") %>%
select(date, petr4 = `PETR4.SA`)

# Decompõe e calcula as anomalias

petr4_anomalized <- petr4 %>%
time_decompose(petr4) %>%
anomalize(remainder) %>%
time_recompose()

# Plota a decomposição com as anomalias

petr4_anomalized %>%
plot_anomaly_decomposition()+
ggplot2::labs(title = "Decomposição STL e anomalias do preço de fechamento da PETR4",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance.")


Vemos também as anormalidades em grande quantidade no mesmo período.

________________________

(*) Para entender mais sobre análise de séries temporais e mercado financeiro, confira nossos curso de Séries Temporais  e Econometria Financeira.
________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.