Entendendo intervalos de confiança

Ao calcular um parâmetro populacional, realiza-se uma estimação pontual, entretanto, ao realizar a estimação através de uma amostra, é possível obter uma amplitude de possíveis valores dentro dos quais os verdadeiros valores da estimação podem se encontrar. Como é possível construir um intervalo em que há confiança nos valores estimados?  No post de hoje, mostramos uma solução para este problema, conceituando o Intervalo de Confiança e realizando um exemplo com o R.

Ao contrário da estimação pontual/estatística amostral, que calcula o valor de um parâmetro populacional não conhecido como apenas um único valor, o intervalo de confiança entrega o que podemos entender como uma amplitude de possíveis valores deste parâmetro.

Basicamente: queremos encontrar, por exemplo, a média $\sigma$. Podemos calcular um único valor, porém, é possível também calcular uma amplitude de possíveis valores, no qual podemos ter a confiança de que os pontos estimados estejam em determinado intervalo dado uma suposição.

E como definir o Intervalo de Confiança? O IC é definido em 90% =< IC =< 99%. Outra forma de definir o IC é através do nível de significância ( $\alpha$), calculando como IC = 1 -   $\alpha$. O mais comum é definir o IC em 95%, significando que em uma amostra que segue distribuição normal, esses 95% representam +- 1,96 desvios da média.

Exemplo com o pacote {infer} no R

Podemos realizar um exemplo utilizando o R. O código completo do exemplo e o vídeo comentado estão disponíveis para os membros do Clube AM.

Consideramos uma suposição: se uma pessoa boceja, é provável que ao presenciar o momento, uma outra pessoa boceja logo em seguida?

O dataset mithbuster_yawn representa os dados de uma pesquisa realizada por um episódio da série Mithbuster, em que uma pessoa bocejava em frente aos participantes, e realizava-se a anotação se os participantes bocejavam ou não em seguida.

É possível calcular a diferença de proporção entre aqueles que bocejaram e aqueles não bocejaram a partir da amostra. O resultado pode nos mostrar se essa suposição é verdadeira ou não. Entretanto, não iremos apenas estimar esse único ponto, vamos trabalhar com os possíveis valores estimados e construir um intervalo de confiança para os resultados.

No R, calculamos a distribuição de pontos estimados através de uma simulação bootstrap repetindo o processo 1000 vezes. Com base nos valores obtidos, calculamos o intervalo de confiança em dois erros padrão de distância para cima e para baixo. A linha vertical representa o ponto estimado original, sem realizar a simulação de reamostragem.

Se esse procedimento é repetido 1000 vezes, então é esperado que em 950 vezes, o intervalo de confiança captura o verdadeiro valor da diferença de proporção entre aqueles que bocejaram e não bocejaram, enquanto os 50 restantes não.

Em outras palavras, definimos: Estamos 95% confiantes de que o verdadeiro valor da diferença de proporção entre aqueles que bocejaram e não bocejaram está entre (-0.216, 0.304).

A questão é: como sabemos se há diferença? Sabemos que o valor 0 é abrangido pelo intervalo de confiança. Se a diferença é igual a 0, sabemos que bocejar não há efeito.

Ao calcular o ponto estimado 1000 vezes através do método bootstrap, chegamos ao resultado de que o valor era tanto abaixo de 0, quanto acima de 0, o que sugere que não há evidencias de que há diferença no efeito de bocejar previamente antes de alguém bocejar em seguida.

Se os 95% de confiança estivessem acima de 0, poderíamos concluir que aqueles expostos pelo bocejo, bocejariam logo em seguida.

Faça parte do Clube AM!

Acesse o que há de mais moderno em scripts de R e Python para coletar, tratar, analisar e apresentar dados. Receba todos os exercícios produzidos diariamente na Análise Macro.

Acesse o link por aqui.

Quer saber mais?

Veja nossos cursos de R e Python aplicados para a Análise de Dados e Economia

_____________________________________________

Veja os post anteriores sobre o assunto

Referências

Kim, Y. Albert. Ismay, Chester. Statistical Inference via Data Science A ModernDive into R and the Tidyverse

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.