Hackeando o R: facilitando a análise de dados com o pacote {janitor}

Todos sabemos que boa parte do trabalho na análise de dados está contido na limpeza de dados. Para quem está no começo da aventura nesse mundo pode se assustar, afinal, dados "sujos" são mais comuns do que pode parecer. No Hackeando o R de hoje, iremos mostrar como pacote {janitor} pode ajudar iniciantes na limpeza de dados.

library(tidyverse)
library(janitor)
library(knitr)
library(sidrar)
library(lubridate)

Primeiro, iremos coletar um dataset para que possamos exemplificar algumas funções. A tabela 1620 do SIDRA que se refere as Contas Nacionais Trimestrais, com enfoque no setor agropecuário.

agro <- sidrar::get_sidra(api = "/t/1620/n1/all/v/all/p/all/c11255/90687,90707/d/v583%202")

kable(head(agro[,4:10]), align = "c")

Um das maiores dificuldades que encontramos no R são as formas que os nomes das colunas se idendificam. Muitas vezes o R simpleste não reconhece o formato, ou se torna complicado utilizar certos caracteres nas funções. A função clean_names() facilita a limpeza dos nomes das colunas, retirando caracteres e formatando na forma que o R melhor funciona. Veja a diferença

agro1 <- agro %>% 
clean_names() 

kable(head(agro1[,4:10]), align = "c")

Também podemos encontrar data frames que possuem observações duplicadas. Podemos utilizar a função get_dupes() para confirmar se ocorre isto com nossos dados. Veja que é criado uma coluna informando o fato.

agro1 %>%  
select(trimestre_codigo, valor, `setores_e_subsetores`) %>% 
get_dupes(trimestre_codigo) %>%
  head() %>% 
  kable(align = "c")

Feito as transformações das colunas e a confirmação de há duas observações iguais, pelo fato de existir mais de uma variável, podemos seguir com a limpeza padrão, transformando a data e realizando cálculos.

agro_total <- agro1 %>% 
  select(trimestre_codigo, valor, `setores_e_subsetores`) %>% 
  filter(`setores_e_subsetores` == "Agropecuária - total") %>% 
  mutate(trimestre_codigo = quarter(yq(trimestre_codigo), type = "date_first"),
         var = (valor/lag(valor,1)-1))

kable(head(agro_total), align = "c")

Para melhorar a análise, podemos utilizar a função round_half_up() para que possamos arredondar facilmente nossos dados. Além de utilizar a função adorn_pct_formatting() que personaliza nosso data frame, multiplicando um valor decimal por 100 e insere o caractere "%".

agro_total1 <- agro_total %>% 
  mutate(valor_round_up = round_half_up(agro_total$valor)) %>% 
  adorn_pct_formatting(,,,var)


kable(head(agro_total1), align = "c")

O pacote também oferece outras funções interessantes como tabyl(), que permite contruir uma tabulação com a contagem e porcentagem de variáveis, podendo ser muito utilizada em análise de grupos. A função excel_numeric_to_date(), que realiza a transformação de uma data serial importada do excel na classe Date.

________________________

(*) Quer aprender mais sobre a linguagem R? confira nosso Curso de Introdução ao R para análise de dados.

________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.