acurácia

Imagine que você tenha uma “simples” tarefa: prever o futuro de uma variável econômica relevante, como a taxa de inflação do país. Existem diversas abordagens para cumprir esta missão, desde o uso de modelos preditivos econométricos, modelos de machine learning ou até mesmo modelos de inteligência artificial (IA). Qual caminho escolher? Qual abordagem é a melhor? Neste artigo tentamos dar uma resposta para estas perguntas, usando como exemplo o IPCA como variável de interesse.
Neste artigo exploramos as técnicas de Bootstrapping, Bagging, Boosting e Random Forests com o objetivo de aumentar o desempenho em modelos preditivos. Percorremos o modo de funcionamento de cada técnica e sua aplicação usando linguagem de programação com dados econômicos do Brasil.
Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.
Nesse artigo apresentamos o modelo de regressão logística, para resolver problemas de classificação binária. Mostramos a intuição do modelo e sua formulação matemática, além de pontuar as principais aplicações e casos de uso. Ao final, demonstramos um exemplo aplicado à classificação econômica para agrupamento em categorias de países com dados reais, usando as linguagens de programação R e Python.
Uma extensão natural para a criação de modelos macroeconométricos é, certamente, avaliar o quão bom ou ruim é a previsão gerada. Para isso, existem algumas medidas que procuram qualificar a distância entre a previsão feita e o valor efetivamente observado. Neste artigo, verificamos algumas dessas medidas.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.